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Preface

This book is the eighth edition of an elementary text on solid state/

condensed matter physics for seniors and beginning graduate students of the
physical sciences, chemistry, and engineering. In the vears since the first edi-
tion was published the field has developed vigorously, and there are notable
applications. The challenge to the author has been to treat significant new
areas while maintaining the introductory level of the text. It would be a pity to
present such a physical, tactile field as an exercise in formalism.

At the first edition in 1953 superconductivity was not understood; Fermi
surfaces in metals were beginning to be explored and cyclotron resonance in
semiconductors had just been observed; ferrites and permanent magnets were
beginning to be understood; only a few physicists then believed in the reality of
spin waves. Nanophysics was forty years off. In other fields, the structure of
DNA was determined and the drift of continents on the Earth was demon-
strated. It was a great time to be in Science, as it is now. I have tried with the
successive editions of ISSP to introduce new generations to the same excitement.

There are several changes from the seventh edition, as well as much
clarification:

¢ An important chapter has been added on nanophysics, contributed by an
active worker in the ficld, Professor Paul L. McEuen of Cornell University.
Nanophysics is the science of materials with one, two, or three small dimen-
sions, where “small” means (nanometer 107° m). This field is the most excit-
ing and vigorous addition to solid state science in the last ten vears.

e The text makes use of the simplifications made possible by the universal
availability of computers. Bibliographies and references have been nearly
eliminated because simple computer searches using keywords on a search
engine such as Google will quickly generate many useful and more recent
references. As an example of what can be done on the Web, explore the
entry http://www.physicsweb.org/bestof/cond-mat. No lack of honor is in-
tended by the omissions of early or traditional references to the workers
who first worked on the problems of the solid state.

e The order of the chapters has been changed: superconductivity and
magnetism appear earlier, thereby making it easier to arrange an interesting
one-semester course.

The crystallographic notation conforms with current usage in physics. Im-
portant equations in the body of the text are repeated in SI and CGS-Gaussian
units, where these differ, except where a single indicated substitution will
translate from CGS to SI. The dual usage in this book has been found helpful
and acccptable. Tables are in conventional units. The symbol ¢ denotes the



Preface

charge on the proton and is positive. The notation (18) refers to Equation 18
of the current chapter, but (3.18) refers to Equation 18 of Chapter 3. A caret ()
over a vector denotes a unit vector.

Few of the problems are exactly easy: Most were devised to carry forward
the subject of the chapter. With few exceptions, the problems are those of the
original sixth and seventh editions. The notation QTS refers to my Quantum
Theory of Solids, with solutions by C. Y. Fong; TP refers to Thermal Physics,
with H. Kroemer.

This edition owes much to detailed reviews of the entire text by Professor
Paul L. McEuen of Cornell University and Professor Roger Lewis of Wollongong
University in Australia. They helped make the book much easier to read and un-
derstand. However, I must assume responsibility for the close relation of the text
to the earlier editions, Many credits for suggestions, reviews, and photographs
are given in the prefaces to earlier editions. I have a great debt to Stuart Johnson,
my publisher at Wiley; Suzanne Ingrao, my editor; and Barbara Bell, my per-
sonal assistant.

Corrections and suggestions will be gratefully received and may be ad-
dressed to the author by email to kittel@berkeley.edu.

The Instructor’s Manual is available for download at: www.wiley.com/
college/kittel.

Charles Kittel



Contenis

CHAPTER 1: CRYSTAL STRUCTURE

Periodic Array of Atoms
Lattice Translation Vectors
Basis and the Crystal Structure
Primitive Lattice Cell

Fundamental Types of Lattices
Two-Dimensional Lattice Types
Three-Dimensional Lattice Types

Index Systems for Crystal Planes

Simple Crystal Structures
Sodium Chloride Structure
Cesium Chloride Structure

Hexagonal Close-Packed Structure (hep)

Diamond Structure
Cubic Zinc Sulfide Structure

Direct Imaging of Atomic Structure

Nonideal Crystal Structures
Random Stacking and Polytypism

Crystal Structure Data
Summary

Problems

CHAPTER 2: WAVE DIFFRACTION AND THE RECIPROCAL

LATTICE

Diffraction of Waves by Crystals
Bragg Law

Scattered Wave Amplitude
Fourier Analysis
Reciprocal Lattice Vectors
Diffraction Conditions
Laue Equations

Brillouin Zones
Reciprocal Lattice to sc Lattice
Reciprocal Lattice to bee Lattice
Reciprocal Lattice to fec Lattice

© o o I

ot
[

T I T e
D © © W W~ U AW W

3]
133

23

25
25

26
27
29
30
32

33
34
36
37



CHAPTER 3:

Fourier Analysis of the Basis
Structure Factor of the bee Lattice
Structure factor of the fcc Lattice
Atomic Form Factor

Summary

Problems

CRYSTAL BINDING AND ELASTIC CONSTANTS

Crystals of Inert Gases
Van der Waals—London Interaction
Repulsive Interaction
Equilibrium Lattice Constants
Cohesive Energy

Ionic Crystals
Electrostatic or Madelung Energy
Evaluation of the Madelung Constant
Covalent Crystals
Metals
Hydrogen Bonds

Atomic Radii
Ionic Crystal Radii

Analysis of Elastic Strains
Dilation
Stress Components
Elastic Compliance and Stiffness
Constants
Elastic Energy Density
Elastic Stiffness Constants of Cubic Crystals
Bulk Modulus and Compressibility

Elastic Waves in Cubic Crstals
Waves in the [100] Direction
Waves in the [110] Direction

Summary

Problems

CHAPTER 4: PHONONS 1. CRYSTAL VIBRATIONS

Vibrations of Crystals with Monatomic Basis
First Brillouin Zone
Group Velocity

39
40
40
41

43
43

47

49
53
56
58
59

60
60
64
67
69
70
70
72

73
75

-
{

77
77
78
80
80
81
82
83

85

89
91
93
94



Contenis

Long Wavelength Limit 94
Derivation of Force Constants from Experiment 94
Two Atoms per Primitive Basis 95
Quantization of Elastic Waves 99
Phonon Momentum 100
Inelastic Scattering by Phonons 100
Summary 102
Problems 102
CHAPTER 5: PHONONS 11. THERMAL PROPERTIES 105
Phonon Heat Capacity 107
Planck Distribution 107
Normal Mode Enumeration 108
Deansity of States in One Dimension 108
Density of States in Three Dimensions 111
Debye Model for Density of States 112
Debye T Law 114
Einstein Model of the Density of States 114
General Result for D(w) 117
Anharmonic Crystal Interactions 119
Thermal Expansion 120
Thermal Conductivity 121
Thermal Resistivity of Phonon Gas 123
Umklapp Processes 125
Imperfecions 126
Problems 128
CHAPTER 6: FREE ELECTRON FERMI GAS 131
Energy Levels in One Dimension 134
Effect of Temperature on the Fermi-
Dirac Distribution 136
Free Electron Gas in Three Dimensions 137
Heat Capacity of the Electron Gas 141
Experimental Heat Capacity of Metals 145
Heavy Fermions 147
Electrical Conductivity and Ohm’s Law 147
Experimental Electrical Resistivity of Metals 148

Umklapp Scattering 151



Motion in Magnetic Fields 152

Hall Effect 153
Thermal Conductivity of Metals 156
Ratio of Thermal to Electrical Conductivity 156
Problems 157
CHAPTER 7: ENERGY BANDS 161
Nearly Free Electron Model 164
Origin of the Energy Gap 165
Magnitude of the Energy Gap 167
Bloch Functions 167
Kronig-Penney Model 168
Wave Equation of Electron in a
Periodic Potential 169
Restatement of the Bloch Theorem 173
Crystal Momentum of an Electron 173
Solution of the Central Equation 174
Kronig-Penney Model in Reciprocal Space 174
Empty Lattice Approximation 176
Approximate Solution Near 2 Zone Boundary 177
Number of Orbitals in a Band 180
Metals and Insulators 181
Summary 182
Problems 182
CHAPTER 8: SEMICONDUCTOR CRYSTALS 185
Band Gap 187
Equations of Motion 191
Physical Derivation of #k = F 193
Holes 194
Effective Mass 197
Physical Interpretation of the Effective Mass 198
Effective Masses in Semiconductors 200
Silicon and Germanium 202
Intrinsic Carrier Concentration 205
Intrinsic Mobility 208
Impurity Conductivity 209
Donor States 209
Acceptor States 211

Thermal Ionization of Donors and Acceptors 213



Conients

Thermoelectric Effects 214
Semimetals 215
Superlattices 216
Bloch Oscillator 217
Zener Tunneling 217
Summary 217
Problems 218
CHAPTER 9: FERMI SURFACES AND METALS 221
Reduced Zone Scheme 293
Periodic Zone Scheme 225
Construction of Fermi Surfaces 296
Nearly Free Electrons 228
Electron Orbits, Hole Orbits, and Open Orbits 230
Calculation of Energy Bands 232
Tight Binding Method of Energy Bands 232
Wigner-Seitz Method 236
Cohesive Energy 237
Pseudopotential Methods 239
Experimental Methods in Fermi Surface Studies 249
Quantization of Orbits in a Magnetic Field 242
De Haas-van Alphen Effect 244
Extremal Orbits 248
Fermi Surface of Copper 249
Magnetic Breakdown 951
Summary 252
Problems 259,
CHAPTER 10: SUPERCONDUCTIVITY 257
Experimental Survey 259
Occurrence of Superconductivity 260
Destruction of Superconductivity of Magnetic Fields 262
Meissner Effect 262
Heat Capacity 264
Energy Gap 266
Microwave and Infrared Properties 268
Isotope Effect 269
Theoretical Survey 270
Thermodynamics of the Superconducting Transition 270

London Equation 273



Coherence Length 276

BCS Theory of Superconductivity 277
BCS Ground State 278
Flux Quantization in a Superconducting Ring 279
Duaration of Persistent Currents 282
Type 1I Superconductors 283
Vortex State 284
Estimation of H,;, and H,, 284
Single Particle Tunneling 287
Josephson Superconductor Tunneling 289
Dc Josephson Effect 289
Ac Josephson Effect 290
Macroscopic Quantum Interference 292
High-Temperature Superconductors 293
Summary 264
Problems 294
Reference 296
CHAPTER 11: DIAMAGNETISM AND PARAMAGNETISM 297
Langevin Diamagnetism Equation 299
Quantum Theory of Diamagnetism of
Mononuclear Systems 301
Paramagnetism 302
Quantum Theory of Paramagnetism 302
Rare Earth Ions 305
Hund Rules 306
Iron Group Ions 307
Crystal Field Splitting 307
Quenching of the Orbital Angular Momentum 308
Spectroscopic Splitting Factor 311
Van Vleck Temperature-Independent Paramagnetism 311
Cooling by Isentropic Demagnetization 312
Nuclear Demagnetization 314
Paramagnetic Susceptibility of Conduction Electrons 315
Summary 317
Problems 318
CHAPTER 12: FERROMAGNETISM AND ANTIFERROMAGNETISM 321
Ferromagnetic Order 323

Curie Point and the Exchange Integral 323



Contents

Temperature Dependence of the Saturation

Magnetization 326
Saturation Magnetization at Absolute Zero 328
Magnons 330
Quantization of Spin Waves 333
Thermal Excitation of Magnons 334
Neutron Magnetic Scattering 335
Ferrimagnetic Order 336
Curie Temperature and Susceptibility
of Ferrimagnets 338
Iron Garnets 339
Antiferromagnetic Order 340
Susceptibility Below the Néel Temperature 343
Antiferromagnetic Magnons 344
Ferromagnetic Domains 346
Anisotropy Energy 348
Transition Region between Domains 349
Origin of Domains 351
Coercivity and Hysteresis 352
Single Domain Particles 354
Geomagnetism and Biomagnetism 355
Magnetic Force Microscopy 355
Summary 356
Problems 357
CHAPTER 13: MAGNETIC RESONANCE 361
Nuclear Magnetic Resonance 363
Equations of Motion 366
Line Width 370
Motional Narrowing 371
Hyperfine Splitting 373
Examples: Paramagnetic Point Defects 375
F Centers in Alkali Halides 376
Donor Atoms in Silicon 376
Knight Shift 377
Nuclear Quadrupole Resonance 379
Ferromagnetic Resonance 379
Shape Effects in FMR 380
Spin Wave Resonance 382

Antiferromagnetic Resonance 383



xiv

CHAPTER 14:

CHAPTER 15:

Electron Paramagnetic Resonance
Exchange Narrowing
Zero-field Splitting

Principle of Maser Action
Three-Level Maser
Lasers

Summary

Problems

PLASMONS, POLARITONS, AND POLARONS

Dielectric Function of the Electron Gas
Definitions of the Dielectric Function
Plasma Optics
Dispersion Relation for Electromagnetic Waves
Transverse Optical Modes in a Plasma
Transparency of Metals in the Ultraviolet
Longitudinal Plasma Oscillations

Plasmons

Electrostatic Screening
Screened Coulomb Potential
Pseudopotential Component U(0)

Mott Metal-Insulator Transition
Screening and Phonons in Metals

Polaritons
LST Relation

Electron-Electron Interaction
Fermi Liquid
Electron-Electron Collisions

Electron-Phonon Interaction:
Polarons

Peierls Instability of Linear
Metals

Summary

Problems

OPTICAL PROCESSES AND EXCITONS

Optical Reflectance
Kramers-Kronig Relations
Mathematical Note

386
386
386
386
388
389

390
391

393

395
395
396
397
398
398
398
401

403
406
407
407
409

410
414

417
417
417

420

422
424
424

427

429
430
432



Contents

Example: Conductivity of collisionless

Electron Gas 433
Electronic Interband Transitions 434
Excitons 435
Frenkel Excitons 437
Alkali Halides 440
Molecular Crystals 440
Weakly Bound (Mott-Wannier) Excitons 441
Exciton Condensation into Electron-Hole
Drops (EHD) 441
Raman Effects in Crystals 444
Electron Spectroscopy with X-Rays 447
Energy Loss of Fast Particles in a Solid 448
Summary 449
Problems 450
CHAPTER 16: DIELECTRICS AND FERROELECTRICS 453
Maxwell Equations 455
Polarization 455
Macroscopic Electric Field 456
Depolarization Field, E, 458
Local Electric Field at an Atom 460
Lorentz Field, E, 462
Field of Dipoles Inside Cavity, Eg 462
Dielectric Constant and Polarizability 463
Electronic Polarizability 464
Classical Theory of Electronic Polarizability - 466
Structural Phase Transitions 467
Ferroelectric Crystals 467
Classification of Ferroelectric Crystals 469
Displacive Transitions 471
Soft Optical Phonons 473
Landau Theory of the Phase Transition 474
Second-Order Transition 475
First-Order Transition 477
Antiferroelectricity 479
Ferroelectric Domains 479
Piezoelectricity 481
Summary 482

Problems 483



CHAPTER 17:

CHAPTER 18:

SURFACE AND INTERFACE PHYSICS
Reconstruction and Relaxation

Surface Crystallography

Reflection High-Energy Electron

Diffraction
Surface Electronic Structure

Work Function

Thermionic Emission

Surface States

Tangential Surface Transport
Magnetoresistance in a Two-Dimensional
Channel

Integral Quantized Hall Effect (IQHE)

IQHE in Real Systems

Fractional Quantized Hall Effect (FQHE)
p-n Junctions

Rectification

Solar Cells and Photovoltaic Detectors

Schottky Barrier

Heterostructures

n-N Heterojunction
Semiconductor Lasers
Light-Emitting Diodes
Problems

NANOSTRUCTURES

Imaging Techniques for Nanostructures
Electron Microscopy
Optical Microscopy
Scanning Tunneling Microscopy
Atomic Force Microscopy

Electronic Structure of 1D Systems
One-Dimensional Subbands
Spectroscopy of Van Hove Singularities

1D Metals — Coluomb Interactions and Lattice

Copulings
Electrical Transport in 1D

Conductance Quantization and the Landauer

Formula
Two Barriers in Series-resonant Tunneling
Incoherent Addition and Ohm’s Law

487
489

490

493

494
494
495
495
497

498
499
500
503
503
504
506
506
507
508

510
511
513

515

519
520
521
523
526
528
528
529

531
533

533
536
538



Localization
Voltage Probes and the Buttiker-Landauer
Formalism
Electronic Structure of 0D Systems
Quantized Energy Levels
Semiconductor Nanocrystals
Metallic Dots
Discrete Charge States
Electrical Transport in 0D
Coulomb Oscillations
Spin, Mott Insulators, and the Kondo Effect
Cooper Pairing in Superconducting Dots
Vibrational and Thermal Properties of
Nanostructures
Quantized Vibrational Modes
Transverse Vibrations
Heat Capacity and Thermal Transport

Summary

Problems

CHAPTER 19: NONCRYSTALLINE SOLIDS

Diffraction Pattern
Monatomic Amorphous Materials
Radial Distribution Function
Structure of Vitreous Silica, SiO,

Glasses
Viscosity and the Hopping Rate

Amorphous Ferromagnets

Amorphous Semiconductors

Low Energy Excitations in Amorphous Solids

Heat Capacity Calculation
Thermal Conductivity

Fiber Optics
Rayleigh Attenuation

Problems

CHAPTER 20: POINT DEFECTS
Lattice Vacancies

Diffusion
Metals

Contenis

539

540
545
545
545
547
549
551
551
554
556

557
557
559
561

562
562

565

567
568
569
570

573
574

575
577

578
578
579

581
582

582

583
585

588
591

xvi



Color Centers
F Centers
Other Centers in Alkali Halides
Prablems

CHAPTER 21: DISLOCATIONS

Shear Strength of Single Crystals
Slip

Dislocations
Burgers Vectors
Stress Fields of Dislocations
Low-angle Grain Boundaries
Dislocation Densities
Dislocation Multiplication and Slip

Strength of Alloys

Dislocations and Crystal Growth
Whiskers

Hardness of Materials

Problems

CHAPTER 22: ALLOYS

APPENDIX A:

APPENDIX B:

General Considerations

Substitutional Solid Solutions-—
Hume-Rothery Rules

Order-Disorder Transformation
Elementary Theory of Order

Phase Diagrams
Eutectics

Transition Metal Alloys
Electrical Conductivily

Kondo Effect

Problems
TEMPERATURE DEPENDENCE OF THE REFLECTION LINES

EwALD CALCULATION OF LATTICE SUMS

Ewald-Kornfeld Method for Lattice Sums
for Dipole Arrays

592
592
583
595

597

599
600

601
604
605
607
610
611

613

615
616

617
618

619
621

624

627
629

632
632

634
636

637
640

641

644

647



APPENDIX C:

APPENDIX D:
APPENDIX E:

APPENDIX F:

APPENDIX G:

ArPENDIX H:
APPENDIX I:
APPENDIX J:

INDEX

QUANTIZATION OF ELASTIC WAVES: PHONONS
Phonon Coordinates
Creation and Annihilation Operators

FERMI-DIRAC DISTRIBUTION FUNCTION
DERIVATION OF THE dk/dt EQUATION

BoLTZMANN TRANSPORT EQUATION
Particle Diffusion
Classical Distribution
Fermi-Dirac Distribution
Electrical Conductivity

VECTOR POTENTIAL, FIELD MOMENTUM,
AND GAUGE TRANSFORMATIONS
Lagrangian Equations of Motion
Derivation of the Hamiltonian
Field Momentum

Gauge Transformation
Gauge in the London Equation
CooPER PAIRS

GINZBURG-LANDAU EQUATION

ELECTRON-PHONON COLLISIONS

Lontents

648
649
651

652

655

656
657
658
659
661

661
662
663
663

664

665

665

667

671

675



1

Crystal Structure

PERIODIC ARERAYS OF ATOMS 3
Lattice translation vectors 4
Basis and the crystal structure 5
Primitive lattice cell 6

FUNDAMENTAL TYPES OF LATTICES 6
Two-dimensional lattice types 8
Three-dimensional lattice types 9

INDEX SYSTEM FOR CRYSTAL PLANES 11

SIMPLE CRYSTAL STRUCTURES 13
Sodium chloride structure 13
Cesium chloride structure 14
Hexagonal close-packed structure 15
Diamond structure 16
Cubic zinc sulfide structure 17

DIRECT IMAGING OF ATOMIC STRUCTURE 18

NONIDEAL CRYSTAL STRUCTURES 18
Random stacking and polytypism 19

CRYSTAL STRUCTURE DATA 19

SUMMARY 22

PROBLEMS 22
1. Tetrahedral angles 22
2. Indices of planes 22
3. Hep structure 22

UNITS: 1A=1 angstrom = 107 %cm = 0.1nm = 107%m



g =
il = :
e

I\ ﬂ——_—‘g{ﬂs—‘g 1
i % 95:;‘
AR

i
Eo [[[[[ L_,———_——__—E:Esz.

WSS
e e o
E=E======——ujlil

TR I AT

V,_%a I TR
.,,ﬁ_,.ﬁ%%%‘__%,,,%%
s.\\\.“\_““\..v%,,__,,%,,?,,,‘,,,%,_,,..%r

S\\‘ o i

,.ﬁ, i
\\3‘

VA
i
R

05&»,

(c)

Figure 1 Relation of the external form of crystals to the form of the elementary building blocks.
The hbuilding blocks are identical in (a) and (b), but different crystal faces are developed.

(c) Cleaving a crystal of rocksalt.



CHAPTER 1: CRYSTAL STRUCTURE
1 A

PERIODIC ARRAYS OF ATOMS

The serious study of solid state physics began with the discovery of x-ray
diffraction by crystals and the publication of a series of simple calculations of
the properties of crystals and of electrons in crystals. Why crystalline solids
rather than noncrystalline solids? The important electronic properties of solids
are best expressed in crystals. Thus the properties of the most important semi-
conductors depend on the crystalline structure of the host, essentially because
electrons have short wavelength components that respond dramatically to the
regular periodic atomic order of the specimen. Noncrystalline materials, no-
tably glasses, are important for optical propagation because light waves have a
longer wavelength than electrons and see an average over the order, and not
the less regular local order itself.

We start the book with crystals. A crystal is formed by adding atoms in a
constant environment, usually in a solution. Possibly the first crystal you ever
saw was a natural quartz crystal grown in a slow geological process from a sili-
cate solution in hot water under pressure. The crystal form develops as identical
building blocks are added continuously. Figure 1 shows an idealized picture of
the growth process, as imagined two centuries ago. The building blocks here
are atoms or groups of atoms. The crystal thus formed is a three-dimensional
periodic array of identical building blocks, apart from any imperfections and
impurities that may accidentally be included or built into the structure.

The original experimental evidence for the periodicity of the structure
rests on the discovery by mineralogists that the index numbers that define the
orientations of the faces of a crystal are exact integers. This evidence was sup-
ported by the discovery in 1912 of x-ray diffraction by crystals, when Laue de-
veloped the theory of x-ray diffraction by a periodic array, and his coworkers
reported the first experimental observation of x-ray diffraction by crystals.
The importance of x-rays for this task is that they are waves and have a wave-
length comparable with the length of a building block of the structure. Such
analysis can also be done with neutron diffraction and with electron diffraction,
but x-rays are usually the tool of choice.

The diffraction work proved decisively that crystals are built of a periodic
array of atoms or groups of atoms. With an established atomic model of a crys-
tal, physicists could think much further, and the development of quantum the-
ory was of great importance to the birth of solid state physics. Related studies
have been extended to noncrystalline solids and to quantum fluids. The wider
field is known as condensed matter physics and is one of the largest and most
vigorous areas of physics.



Lattice Translation Vectors

An ideal crystal is constructed by the infinite repetition of identical groups
of atoms (Fig. 2). A group is called the basis. The set of mathematical points to
which the basis is attached is called the lattice. The lattice in three dimensions
may be defined by three translation vectors a,, a,, as, such that the arrange-
ment of atoms in the crystal looks the same when viewed from the point r as
when viewed from every point r' translated by an integral multiple of the a’s:

l" =r+ U a; + Uy k. Uzaz. (1)

Here u,, us, u, are arbitrary integers. The set of points r’ defined by (1) for all
Uy, Uy, us defines the lattice.

The lattice is said to be primitive if any two points from which the atomic
arrangement looks the same always satisfy (1) with a suitable choice of the in-
tegers u;. This statement defines the primitive translation vectors a;. There
is no cell of smaller volume than a, * a, X aj; that can serve as a building block
for the crystal structure. We often use the primitive translation vectors to de-
fine the crystal axes, which form three adjacent edges of the primitive paral-
lelepiped. Nonprimitive axes are often used as erystal axes when they have a
simple relation to the symmetry of the structure.

Figure 2 The crystal structure is formed by
the addition of the basis (b) to every lattice
point of the space lattice (a). By looking at
(c), one can recognize the basis and then one
can abstract the space lattice. It does not
matter where the basis is put in relation to a
lattice point.
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Basis and the Crystal Structure

The basis of the crystal structure can be identified once the crystal axes
have been chosen. Figure 2 shows how a crystal is made by adding a basis to
every lattice point—of course the lattice points are just mathematical con-
structions. Every basis in a given crystal is identical to every other in composi-
tion, arrangement, and orientation.

The number of atoms in the basis may be one, or it may be more than one.
The position of the center of an atom j of the basis relative to the associated
lattice point is :

.

We may arrange the origin, which we have called the associated lattice point,
sothat 0 = x;, y;, 5, = 1.

(b) {c)

Figure 3a Lattice points of a space lattice in two dimensions. All pairs of vectors a, a; are trans-
lation vectors of the lattice. But a,’"’, a,""’ are not primitive translation vectors because we cannot
form the lattice translation T from integral combinations of a,’’’ and a,’"’. The other pairs shown
of a; and a, may be taken as the primitive translation vectors of the lattice. The parallelograms 1,
2, 3 are equal in area and any of them could be taken as the primitive cell. The parallelogram 4 has
twice the area of a primitive cell.

Figure 3b Primitive cell of a space lattice in three dimensions.

Figure 3¢ Suppose these points are identical atoms: Sketch in on the figure a set of lattice points,
a choice of primitive axes, a primitive cell, and the basis of atoms associated with a lattice point.



Figure 4 A primitive cell may also be chosen fol-
lowing this procedure: (1) draw lines to connect a
given lattice point to all nearby lattice points; (2) at
the midpajnt and normal to these lines, draw new
lines or planes. The smallést volume enclosed in this
way is the Wigner-Seitz primitive cell. All space may
be filled by these cells, just as by the cells of Fig. 3.

Primitive Lattice Cell

The parallelepiped defined by primitive axes a;, a,, a3 is called a primitive
cell (Fig. 3b). A primitive cell is a type of cell or unit cell. (The adjective unit is
superfluous and not needed.) A cell will fill all space by the repetition of suit-
able crystal translation operations. A primitive cell is a minimum-volume cell.
There are many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is
always the same for a given crystal structure.

There is always one lattice point per primitive cell. If the primitive cell is a
parallelepiped with lattice points at each of the eight corners, each lattice
point is shared among eight cells, so that the total number of lattice points in
the cell is one: 8 X § = 1. The volume of a parallelepiped with axes a,, a,, a; is

Vc=|al'az><a3| > (3)

by elementary vector analysis. The basis associated with a primitive cell is called
a primitive basis. No basis contains fewer atorus than a primitive basis contains.
Another way of choosing a primitive cell is shown in Fig. 4. This is known to
physicists as a Wigner-Seitz cell.

FUNDAMENTAL TYPES OF LATTICES

Crystal lattices can be carried or mapped into themselves by the lattice
translations T and by various other symmetry operations. A typical symmetry
operation is that of rotation about an axis that passes through a lattice point.
Lattices can be found such that one-, two-, three-, four-, and sixfold rotation
axes carry the lattice into itself, corresponding to rotations by 2, 27/2, 271/3,
2m/4, and 27/6 radians and by integral multiples of these rotations. The rota-
tion axes are denoted by the symbols 1, 2, 3, 4, and 6.

We cannot find a lattice that goes into itself under other rotations, such as
by 27/7 radians or 27r/5 radians. A single molecule properly designed can have
any degree of rotational symmetry, but an infinite periodic lattice cannot. We
can make a crystal from molecules that individually have a fivefold rotation axis,
but we should not expect the Jattice to have a fivefold rotation axis. In Fig. 5 we
show what happens if we try to construct a periodic lattice having fivefold
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Figure 5 A fivefold axjs of symmetry can-
not exist in a perjodic lattice because it is
not possible to fill the area of a plane with
a connected array of pentagons. We can,
Lowever, fill all the area of a plane with just
two distinet designs of “tiles” or elementary
polygons.

{e) (@

Figure 6 (a) A plane of symmetry parallel to the faces of a cube. (b) A diagonal plane of symmetry
in a cube. (¢) The three tetrad axes of a cube. (d) The four triad axes of a cube. (¢) The six diad axes
of a cube.

symmetry: the pentagons do not fit together to fill all space, showing that we can-
not combine fivefold point symmetry with the required translational periodicity.
By lattice point group we mean the collection of symmetry operations
which, applied about a lattice point, carry the lattice into itself. The possible ro-
tations have been listed. We can have mirror reflections m about a plane through



a lattice point. The inversion operaton is composed of a rotation of 7 followed
by reflection in a plane normal to the rotation axis; the total effect is to replace r
by —r. The symmetry axes and symmetry planes of a cube are shown in Fig. 6.

Two-Dimensional Lattice Types

The lattice in Fig. 3a was drawn for arbitrary a; and a,. A general lattice
such as this is known as an oblique lattice and is invariant only under rotation
of o and 27 about any lattice point. But special lattices of the oblique type can
be invariant under rotation of 27/3, 27/4, or 27/6, or under mirror reflection.
We must impose restrictive conditions on a, and a, if we want to construct a lat-
tice that will be invariant under one or more of these new operations. There are
four distinct types of restriction, and each leads to what we may call a special
lattice type. Thus there are five distinct lattice types in two dimensions, the
oblique lattice and the four special lattices shown in Fig. 7. Bravais lattice is
the common phrase for a distinct lattice type; we say that there are five Bravais
lattices in two dimensions.

B
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Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different
lattice types listed in Table 1. The general lattice is triclinic, and there are
13 special lattices. These are grouped for convenience into systems classified
according to seven types of cells, which are triclinic, monoclinic, orthorhom-
bic, tetragonal, cubic, trigonal, and hexagonal. The division into systems is
expressed in the table in terms of the axial relations that describe the cells.
The cells in Fig. 8 are conventional cells: of these only the sc is a primitive cell.
Often a nonprimitive cell has a more obvious relation with the point symmetry
operations than has a primitive cell.

There are three lattices in the cubic system: the simple cubic (sc) lattice,
the body-centered cubic (bee) lattice, and the face-centered cubic (fec) lattice.

Table 1 The 14 lattice types in three dimensions

Number of Restrictions on conventional

System latces cell axes and angles
Triclinic 1 ay # ay # a
aFBFy
Monoclinic 2 a, # ay F ay
a=y=90"+#p
Orthorhombic 4 a, F ay, * ay
Tetragonal 2 a, = a, F ag
a=p=ry=90°
Cubic 3 a; = ay = ag
a=B=vy=90°
Trigonal 1 a) = ay = as
a=p=1vy<120° # 90°
Hexagonal 1 a; = ay # ay
a=8=90°
y = 120°

B i e A i s 5 .

Figure 8 The cubic space lattices. The cells shown are the conventional cells.
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Table 2 Characteristics of cubic lattices®

Simple Body-centered Face-centered
Volume, ¢onventional cell a* a® a®
Lattice points per cell 1 2 4
Volume, primitive cell a® i i
Lattice points per unit volume Va® o/a® 4/a®
Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 3Y2 a/2 = 0.866a a/2V? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 2% a a
Packing fraction’ i 173 V2

=0.524 =0.680 =(.740

“The packing fraction is the maximum proportion of the available volume that can be filled
with hard spheres.

Figure 10 Primitive translation vectors of the body-

Figure 9 Body-centered cubic lattice, showing a centered cubic lattice; these vectors connect the lattice

primitive cell. The primitive cell shown is a rhombo- point at the origin to lattice points at the body eenters.
hedron of edge §\£ 4, and the angle between adja- The primitive cell is ebtained on completing the rhowm-
cent edges is 109°28". bohedron. In terms of the cube edge g, the primitive

translation vectors are
T 74 ~ A 1 A - &
a=zaX+§—2); a=z0(—%+§+3);
a=m0F—-§+2) .

Here X, §, Z are the Cartesian unit vectors.

The characteristics of the three cubic lattices are summarized in Table 2. A
primitive cell of the bee lattice is shown in Fig. 9, and the primitive translation
vectors are shown in Fig. 10. The primitive translation vectors of the fcc lattice
are shown in Fig. 11. Primitive cells by definition contain only one lattice
point, but the conventional bee cell contains two lattice points, and the fee cell
contains four lattice points.
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Figure 11 The rhombohedral primitive cell of the face-centered Figure 12 Relation of the primitive cell

cubic crystal. The primitive translation vectors a,, a,, a; connect in the hexagonal system (heavy lines) to
the lattice point at the origin with lattice points at the face centers. a prism of hexagonal symmetry. Here
As drawn, the primitive vectors are: oy =ay # ay.

a,=3aX+9): ay=zaf+2); az=zaE+% .

The angles between the axes are 60°.

The position of a point in a cell is specified by (2) in terms of the atomic
coordinates x, y, z. Here each coordinate is a fraction of the axial length a), a,,
a5 in the direction of the coordinate axis, with the origin taken at one corner of
the cell. Thus the coordinates of the body center of a cell are 333, and the face
centers include 330, 053; 305. In the hexagonal system the primitive cell is a

right prism based on a rhombus with an included angle of 120°. Figure 12
shows the relationship of the rhombic cell to a hexagonal prism.

INDEX SYSTEM FOR CRYSTAL PLANES

The orientation of a crystal plane is determined by three points in the
plane, provided they are not collinear. If each point lay on a different crystal
axis, the plane could be specified by giving the coordinates of the points in
terms of the lattice constants a,, a,, a;. However, it turns out to be more useful
for structure analysis to specify the orientation of a plane by the indices deter-
mined by the following rules (Fig. 13).

* Find the intercepts on the axes in terms of the lattice constants a,, a,, a,.
The axes may be those of a primitive or nonprimitive cell.
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Figure 13 This plane intercepts
the a), a,, a; axes at 3a,, 2a,, 2as.
The reciprocals of these numbers
are 3,3, 3. The smallest three inte-
gers having the same ratio are 2, 3,
3, and thus the indices. of the plane
are (233).

M T
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(100) (110) (111)

(200) (100)

Figure 14 Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) and
to (100).

* Take the reciprocals of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The result, en-
closed in parentheses (hkl), is called the index of the plane.

For the plane whose intercepts are 4, 1, 2, the reciprocals are 3,1, and 3; the
smallest three integers having the same ratio are (142). For an intercept at infin-
ity, the corresponding index is zero. The indices of some important planes in a
cubic crystal are illustrated by Fig. 14. The indices (hkl) may denote a single
plane or a set of parallel planes. If a plane cuts an axis on the negative side of the
origin, the corresponding index is negative, indicated by placing a minus sign
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above the index: (hkl). The cube faces of a cubic crystal are (100), (010), (001),
(100), (010), and (001). Planes equivalent by symmetry may be denoted by curly
brackets (braces) around indices; the set of cube faces is {100}. When we speak
of the (200) plane we mean a plane parallel to (100) but cutting the a, axis at La.
The indices [uvw] of a direction in a crystal are the set of the smallest inte-
gers that have the ratio of the components of a vector in the desired direction,
referred to the axes. The a, axis is the [100] direction; the —a, axis is the [010]
direction. In cubic erystals the direction [hkl] is perpendicular to a plane (hkl)
having the same indices, but this is not generally true in other crystal systems.

SIMPLE CRYSTAL STRUCTURES

We discuss simple crystal structures of general interest: the sodium chlo-
ride, cesium chloride, hexagonal close-packed, diamond, and cubic zine sulfide
structures.

Sodium Chloride Structure

The sodium chloride, NaCl, structure is shown in Figs. 15 and 16. The
lattice is face-centered cubic; the basis consists of one Na™ ion and one CI™ ion

Figure 15 We may construct the sodium chloride
crystal structure by arranging Na® and Cl~ ions alter-
nately at the lattice points of a simple cubie lattice. In
the crystal each ion is surrounded by six nearest neigh-
bors of the opposite charge. The space lattice is fee,
and the basis has one Cl™ ion at 000 and one Na* ion at *
353 The figure shows one conventional cubic cell. Figure 16 Model of sodium chloride. The sodium ions are
The ionic diameters here are reduced in relation to the  smaller than the chlorine ions. (Courtesy of A. N. Holden and

cell in order to clarify the spatial arrangement. P. Singer.)
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Figure 17 Natural crystals of lead sulfide, PbS, which has the Figure 18 The cesium chloride crystal

NaCl erystal structure. (Photograph by B. Burleson.) structure. The space lattice is simple
cubic, and the basis has one Cs* ion at
000 and one Cl~ ion at s 1 3.

separated by one-half the body diagonal of a unit cube. There are four units of
NaCl in each unit cube, with atoms in the positions

Each atom has as nearest neighbors six atoms of the opposite kind. Represen-
ative crystals having the NaCl arrangement include those in the following
table. The cube edge a is given in angstroms; 1 A=10"%cm =107 m = 0.1
nm. Figure 17 is a photograph of crystals of lead sulfide (PbS) from Joplin,
Missouri. The Joplin specimens form in beautiful cubes.

Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 18. There is one molecule
per primitive cell, with atoms at the corners 000 and body-centered positions
3 5 5 of the simple cubic space lattice. Each atom may be viewed as at the center
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Figure 19 A close-packed layer of spheres is shown, with centers at points marked A. A second
and identical layer of spheres can be placed on top of this, above and parallel to the plane of the
drawing, with centers over the points marked B. There are two choices for a third layer. It can go
in over A or over C. If it goes in over A, the sequenceé is ABABAB . . . and the structure is hexagonal
close-packed. If the third layer goes in over C, the sequence is ABCABCABC . . . and the structure
is face-centered cubic.

A

B Figure 20 The hexagonal close-packed structure.
The atom positions in this structure do not constitute
a space lattice. The space lattice is simple hexagonal
with a basis of two identical atoms associated with

A

each lattice point. The lattice parameters ¢ and ¢ are
indicated, where ¢ is in the basal plane and ¢ is the
magnitude of the axis a; of Fig. 12.

of a cube of atoms of the opposite kind, so that the number of nearest neigh-
bors or coordination number is eight.

Hexagonal Close-Packed Structure (hcp)

There are an infinite number of ways of arranging identical spheres in a
regular array that maximizes the packing fraction (Fig. 19). One is the face-
centered cubic structure; another is the hexagonal close-packed structure
(Fig. 20). The fraction of the total volume occupied by the spheres is 0.74 for
both structures. No structure, regular or not, has denser packing.

15
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Figure 21 The primitive cell has a; = a,, with an
included angle of 120°. The ¢ axis (or ag) is normal
to the plane of a; and a,. The ideal hep structure has
¢ = 1.633 4. The two atoms of one basis are shown
as solid circles. One atom of the basis is at the ori-
gin; the other atom is at 53, which means at the
position r = éal + %ag + éas.

Spheres are arranged in a single closest-packed layer A by placing each
sphere in contact with six others in a plane. This layer may serve as either the
basal plane of an hep structure or the (111) plane of the fec structure. A sec-
ond similar Jayer B may be added by placing each sphere of B in contact with
three spheres of the bottom layer, as in Figs. 19-21. A third layer C may be
added in two ways. We obtain the fee structure if the spheres of the third layer
are added over the holes in the first layer that are not occupied by B. We
obtain the hep structure when the spheres in the third layer are placed directly
over the centers of the spheres in the first layer.

The number of nearest-neighbor atoms is 12 for both hep and fec struc-
tures. If the binding energy (or free energy) depended only on the number of
nearest-neighbor bonds per atom, there would be no difference in energy
between the fcc and hep structures.

Diamond Structure

The diamond structure is the structure of the semiconductors silicon and
germanium and is related to the structure of several important semiconductor
binary compounds. The space lattice of diamond is face-centered cubic. The
primitive basis of the diamond structure has two identical atoms at coordinates
000 and 333 associated with each point of the fcc lattice, as shown in Fig. 22.
Because the conventional unit cube of the fec lattice contains 4 lattice points,
it follows that the conventional unit cube of the diamond structure contains
2 X 4 = 8 atoms. There is no way to choose a primitive cell such that the basis
of diamond contains only one atom.
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Figure 22 Atomic positions in the cubic cell of the diamond ~ Figure 23 Crystal structure of diamond,
structure projected on a eube face; fractions denote height  showing the tetrahedral bond arrangement.
above the base in units of a cube edge. The points at 0 and 3
are on the fee lattice; those at 3 and 2 are on a similar lattice
displaced along the body diagonal by one-fourth of its length.

With a fee space lattice, the basis consists of two identical
atoms at 000 and § 5 3.

The tetrahedral bonding characteristic of the diamond structure is shown
in Fig. 23. Each atom has 4 nearest neighbors and 12 next nearest neighbors.
The diamond structure is relatively empty: the maximum proportion of the
available volume which may be filled by hard spheres is only 0.34, which is 46
percent of the filling factor for a closest-packed structure such as fec or hep.
The diamond structure is an example of the directional covalent bonding
found in column IV of the periodic table of elements. Carbon, silicon, germa-
nium, and tin can crystallize in the diamond structure, with lattice constants
a = 3.567, 5.430, 5.658, and 6.49 ;&, respectively. Here a is the edge of the
conventional cubic cell.

Cubic Zinc Sulfide Structure

The diamond structure may be viewed as two fce structures displaced
from each other by one-quarter of a body diagonal. The cubic zinc sulfide
(zinc blende) structure results when Zn atoms are placed on one fec lattice and
S atoms on the other fec lattice, as in Fig. 24. The conventional cell is a cube.

The coordinates of the Zn atoms are 000; 05 5; £ 02: 210, the coordinates of the

S atoms are 355232253222 The lattice is fce. There are four molecules qﬂl
ZnS per conventional cell. About each atom there are four equally distaflt

atoms of the opposite kind arranged at the corners of a regular tetrahedroa...



Figure 24 Crystal structure of cubic zinc
sulfide.

The diamond structure allows a center-of-inversion symmetry operation
at the midpoint of every line between nearest-neighbor atoms. The inversion
operation carries an atom at r into an atom at —r. The cubic ZnS struc-
ture does not have inversion symmetry. Examples of the cubic zinc sulfide
structure are

The close equality of the lattice constants of several pairs, notably (Al, Ga)P
and (Al, Ga)As, makes possible the construction of semiconductor heterojunc-
tions (Chapter 19).

DIRECT IMAGING OF ATOMIC STRUCTURE

Direct images of crystal structure have been produced by transmission
electron microscopy. Perhaps the most beautiful images are produced by scan-
ning tunneling microscopy; in STM (Chapter 19) one exploits the large varia-
tions in quantum tunneling as a function of the height of a fine metal tip above
the surface of a crystal. The image of Fig. 25 was produced in this way. An
STM method has been developed that will assemble single atoms into an orga-
nized layer nanometer structure on a crystal substrate.

NONIDEAL CRYSTAL STRUCTURES

The ideal crystal of classical crystallographers is formed by the periodic
repetition of identical units in space. But no general proof has been given that
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Figure 25 A scanning tunneling microscope
image of atoms on a (111) surface of foc plat-
inum at 4 K. The nearest-neighbor spacing is
2.78 A. (Photo courtesy of D. M. Eigler, IBM
Research Division.)

the ideal crystal is the state of minimum energy of identical atoms at the tem-
perature of absolute zero. At finite temperatures this is likely not to be true. We
give a further example here.

Random Stacking and Polytypism

The fee and hep structures are made up of close-packed planes of atoms.
The structures differ in the stacking sequence of the planes, fce having the se-
quence ABCABC . . . and hep having the sequence ABABAB . . . . Structures
are known in which the stacking sequence of close-packed planes is random.
This is known as random stacking and may be thought of as crystalline in two
dimensions and noncrystalline or glasslike in the third.

Polytypism is characterized by a stacking sequence with a long repeat
unit along the stacking axis. The best known example is zinc sulfide, ZnS, in
which more than 150 polytypes have been identified, with the longest period-
icity being 360 layers. Another example is silicon carbide, SiC, which occurs
with more than 45 stacking sequences of the close-packed layers. The polytype
of SiC known as 393R has a primitive cell with a = 3.079 A and ¢ = 989.6 A.
The longest primitive cell observed for SiC has a repeat distance of 594 layers.
A given sequence is repeated many times within a single crystal. The mecha-
nism that induces such long-range crystallographic order is not a long-range
force, but arises from spiral steps due to dislocations in the growth nucleus
(Chapter 20).

CRYSTAL STRUCTURE DATA

In Table 3 we list the more common crystal structures and lattice structures
of the elements. Values of the atomic concentration and the density are given in
Table 4. Many elements occur in several crystal structures and transform from
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Table 3 Crystal structures of the elements

The data given are at room temperature for the most common form, or at
the stated temperature in deg K. (Inorganic Crystal Structure Database
(ICSD) online.
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Table 4 Density and atomic concentration

The data are given at atmospheric pressure and room temperature, or at the
stated temperature in deg K. (Crystal modxﬁcatlons as for Table 3.)
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one to the other as the temperature or pressure is varied. Sometimes two struc-
tures coexist at the same temperature and pressure, although one may be slightly
more stable.

SUMMARY

e A lattice is an array of points related by the lattice translation operator
T = ua; + usa, + uzag, where u,, u,, u, are integers and a,, a,, a; are the
crystal axes.

o To form a crystal we attach to every lattice point an identical basis composed
of s atoms at the positions Y, = xa; + ya, + za, withj = 1,2,...,s. Here
x, y, z may be selected to have values between 0 and 1.

e The axes a,, a,, a5 are primitive for the minimum cell volume |a;* a, X a;]
for which the crystal can be constructed from a lattice translation operator T
and a basis at every lattice point.

Problems

1. Tetrahedral angles. The angles between the tetrahedral bonds of diamond are the
same as the angles between the body diagonals of a cube, as in Fig. 10. Use elemen-
tary vector analysis to find the value of the angle.

2. Indices of planes. Consider the planes with indices (100) and (001); the lattice is
fce, and the indices refer to the conventional cubic cell. What are the indices of
these planes when referred to the primitive axes of Fig, 117

3. Hcp structure. Show that the c/a ratio for an ideal hexagonal close-packed struc-
ture is (3)"% = 1.633. If ¢/a is significantly larger than this value, the crystal structure
may be thought of as composed of planes of closely packed atoms, the planes being
loosely stacked.
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Figure 2 Derivation of the Bragg equation 2d sin § = nA; here d is the spacing of paralle] atomic
planes and 2m is the difference in phase between reflections from successive planes. The
reflecting planes have nothing to do with the surface planes bounding the particular specimen.



CHAPTER 2: WAVE DIFFRACTION AND
THE RECIPROCAL LATTICE

DIFFRACTION OF WAVES BY CRYSTALS

The Bragg law

We study crystal structure through the diffraction of photons, neutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and on
the wavelength. At optical wavelengths such as 5000 A, the superposition of
the waves scattered elastically by the individual atoms of a crystal results in or-
dinary optical refraction. When the wavelength of the radiation is comparable
with or smaller than the lattice constant, we may find diffracted beams in
directions quite different from the incident direction.

W. L. Bragg presented a simple explanation of the diffracted beams from a
crystal. The Bragg derivation is simple but is convincing only because it repro-
duces the correct result. Suppose that the incident waves are reflected specu-
larly from parallel planes of atoms in the crystal, with each plane reflecting
only a very small fraction of the radiation, like a lightly silvered mirror. In
specular (mirrorlike) reflection the angle of incidence is equal to the angle of
reflection. The diffracted beams are found when the reflections from parallel
planes of atoms interfere constructively, as in Fig. 2. We treat elastic scatter-
ing, in which the energy of the x-ray is not changed on reflection.

Consider parallel lattice planes spaced d apart. The radiation is incident in
the plane of the paper. The path difference for rays reflected from adjacent
planes is 2d sin 6, where 6 is measured from the plane. Constructive interfer-
ence of the radiation from successive planes occurs when the path difference
is an integral number n of wavelengths A, so that

(1)

‘This is the Bragg law, which can be satisfied only for wavelength A < 2d.

Although the reflection from each plane is specular, for only certain values
of 0 will the reflections from all periodic parallel planes add up in phase to give
a strong reflected beam. If each plane were perfectly reflecting, only the first
plane of a parallel set would see the radiation, and any wavelength would be re-
flected. But each plane reflects 1072 to 107° of the incident radiation, so that
10° to 10° planes may contribute to the formation of the Bragg-reflected beam in
a perfect crystal. Reflection by a single plane of atoms is treated in Chapter 17
on surface physics.

The Bragg law is a consequence of the periodicity of the lattice. Notice
that the law does not refer to the composition of the basis of atoms associated
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Figure 3 Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of
x-ray or neutron wavelengths from a broad speetrum incident beam. The upper part of the figurc
shows the analysis (obtained by reflection from a second crystal) of the purity of 2 1.16 A beam of
neutrons from a cal¢ium fluoride crystal monochromator. (After G. Bacon.)
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Figure 4 X-ray ditfractometer recording of powdered silicon, showing a counter recording of the

diffracted beams. (Courtesy of W. Parrish.)

with every lattice point. We shall see, however, that the composition of the
basis determines the relative intensity of the various orders of diffraction
(denoted by n above) from a given set of parallel planes. Bragg reflection from
a single crystal is shown in Fig. 3 and from a powder in Fig. 4.

SCATTERED WAVE AMPLITUDE

A The Bragg derivation of the diffraction condition (1) gives a neat state-
ment of the condition for the constructive interference of waves scattered
from the lattice points. We need a deeper analysis to determine the scattering
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intensity from the basis of atoms, which means from the spatial distribution of
electrons within each cell.

Fourier Analysis

We have seen that a crystal is invariant under any translation of the form
T = uja; + uya, + uyag, where u), uy, 3 are integers and ay, a,, ay are the crystal
axes. Any local physical property of the crystal, such as the charge concentra-
tion, electron number density, or magnetic moment density is invariant under T.
What is most important to us here is that the electron number density n(r) is a
periodic function of r, with periods a,, a,, as in the directions of the three crys-
tal axes, respectively. Thus

nlr + T) =n(r) . (2)

Such periodicity creates an ideal situation for Fourier analysis. The most inter-
esting properties of crystals are directly related to the Fourier components of
the electron density.

We consider first a function n(x) in one dimension with period a in the
direction x. We expand n(x) in a Fourier series of sines and cosines:

n(x) = n, +E [C, cos(2mpx/a) + S, sin(2mpx/a)] , (3)
p>0
where the p are positive integers and Cps Sy are real constants, called the
Fourier coefficients of the expansion. The factor 27/a in the arguments en-
sures that n(x) has the period a:

nlx +a) =ny+ E[CP cos(2mpx/a + 2mp) + S, sin(2mpx/a + 21rp)] )
4
=n,+ E[CP cos(2mpx/a) + S, sin(2mpx/a)] = n(x) .

We say that 27rp/a is a point in the reciprocal lattice or Fourier space of the
crystal. In one dimension these points lie on a line. The reciprocal lattice
points tell us the allowed terms in the Fourier series (4) or (5). A term is al-
lowed if it is consistent with the periodicity of the crystal, as in Fig. 5; other

Figure 5
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points in the reciprocal space are not allowed in the Fourier expansion of a pe-
riodic function.
It is convenient to write the series (4) in the compact form

n(x) =2 n, exp(i2mpx/a) , (5)
P

where the sum is over all integers p: positive, negative, and zero. The coeffi-
cients n, now are complex numbers. To ensure that n(x) is a real function, we
require

ni=n, , (6)
for then the sum of the terms in p and ~p is real. The asterisk on n*,, denotes
the complex conjugate of n_,.

With ¢ = 27pr/a, the sum of the terms in p and —p in (5) is real if (6) is
satisfied. The sum is

n,(cos ¢ +isin @) +n_,(cos ¢ —isin @)
=(n,+n_,)cos ¢ +i(n,—n_)sing ,

(7)
which in turn is equal to the real function
2Re(n,} cos ¢ — 2Im{n,} sin ¢ (8)

if (6) is satisfied. Here Re{n,} and Im{n,} are real and denote the real
and imaginary parts of n,,. Thus the number density n(x) is a real function, as
desired.

The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

n(r)=§ n¢ exp(iG - r) (9)
is invariant under all crystal translations T that leave the crystal invariant. It

will be shown below that the set of Fourier coefficients ne determines the
x-ray scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient n,
in the series (5) is given by

n,= al ja dx n(x) exp(—i2mpx/a) . (10)
) )
Substitute (5) in (10) to obtain

n, =a7'Y fly ja dx expli2m(p’ — pl/a] . 1n
I 0
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Ifp’ # p the value of the integral is

a 27 =p) —1) = ()
(e
i2m(p" —p) ( )

>

because p’ — p is an integer and exp[i2n(integer)] = 1. For the term p’ = p the
integrand is exp(i0) = 1, and the value of the integral is g, so that n, = a’lnpa =
n,,, which is an identity, so that (10) is an identity.

Asin (10), the inversion of (9) gives

nG:VC_LJ. “an(r) exp(—iG - 1) . (12)

Here V, is the volume of a cell of the crystal.

Reciprocal Lattice Vectors

To proceed further with the Fourier analysis of the electron concentration we
must find the vectors G of the Fourier sum Zn¢ exp(iG - r) as in (9). There is a
powerful, somewhat abstract procedure for doing this. The procedure forms the
theoretical basis for much of solid state physics, where Fourier analysis is the
order of the day.

We construct the axis vectors b, by, b; of the reciprocal lattice:

T —

S

(13)

The factors 27 are not used by crystallographers but are convenient in solid state
physics.

If a), a,, a; are primitive vectors of the crystal lattice, then by, by, b; are
primitive vectors of the reciprocal lattice. Each vector defined by (13) is
orthogonal to two axis vectors of the crystal lattice. Thus b;, by, b, have the

property

b‘-aj :2776ij , (14)
where 8; = 1ifi = jand §; = 0ifi +# j.
Points in the reciprocal lattice are mapped by the set of vectors
G =0,b; + vsb, + v3b; , (15)

where vy, vy, v3 are integers. A vector G of this form is a reciprocal lattice vector.

The vectors G in the Fourier series (9) are just the reciprocal lattice vectors (15),
for then the Fourier series representation of the electron density has the desired in-
variance under any crystal translation T = u,a, + usa, + uzas. From (9),

n(r +T) = 3 ng expiG * r) exp(iG * T) . (16)
G
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But exp(iG - T) = 1, because

exp(iG « T) = expli(vib; + vob, + v3by) * (u1a) + ugay +usas)]

= expli2m(viuy + vau,y + vaug)] . ()
The argument of the exponential has the form 27i times an integer, because
Oty + vy + iy is an integer, being the sum of products of integers. Thus by
(9) we have the desired invariance, n(r + T) = n(r) = 3 n¢ exp(iG - x).

Every crystal structure has two lattices associated with it, the crystal lattice
and the reciprocal lattice. A diffraction pattern of a crystal is, as we shall show,
a map of the reciproeal lattice of the crystal. A microscope image, if it could be
resolved on a fine enough scale, is a map of the crystal structure in real space.
The two lattices are related by the definitions (13). Thus when we rotate a crys-
tal in a holder, we rotate both the direct lattice and the reciprocal lattice.

Vectors in the direct lattice have the dimensions of [length]; vectors in the
reciprocal lattice have the dimensions of [Vlength]. The reciprocal lattice is a
lattice in the Fourier space associated with the crystal. The term is motivated
below. Wavevectors are always drawn in Fourier space, so that every position
in Fourier space may have a meaning as a description of a wave, but there is a
special significance to the points defined by the set of G’s associated with a
crystal structure.

Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible
x-ray reflections.

We see in Fig. 6 that the difference in phase factors is exp[itk — k') - r]
between beams scattered from volume elements r apart. The wavevectors of
the incoming and outgoing beams are k and k’. We suppose that the amplitude

‘ Outgoing beam
Inc1de.r‘|(t heam giker
eiker

Figure 6 The difference in path length of the incident wave k at the points O, r is r sin @, and the
difference in phase angle is (27r sin @)X, which is equal to k - r. For the diffracted wave the dif-
ference in phase angle is —k’ - r. The total difference in phase angle is (k — k') - r, and the wave
scattered from dV at r has the phase factor expli(k — k') - ¥] relative to the wave scattered from a
volume element at the origin O.
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Figure 7 Definition of the scattering vector Ak such that
k + Ak = k'. In elastic scattering the magnitudes satisfy
k' = k. Further, in Bragg scattering from a periodic lattice,
any allowed Ak must equal some reciprocal lattice vector G.

of the wave scattered from a volume element is proportional to the local elec-
tron concentration n(r). The total amplitude of the scattered wave in the di-
rection of k’ is proportional to the integral over the crystal of n(r) dV times the
phase factor exp[i(k — k') - r].

In other words, the amplitude of the electric or magnetic field vectors in
the scattered electromagnetic wave is proportional to the following integral
which defines the quantity F that we call the scattering amplitude:

F = [dVn(r) explitk — k') - r]=f dV n(r) exp(—iAk - 1) , (18)
where k — k' = —Ak, or
k+Ak=k" . (19)

Here Ak measures the change in wavevector and is called the scattering
vector (Fig. 7). We add Ak to k to obtain k’, the wavevector of the scat-
tered beam.

We introduce into (18) the Fourier components (9) of n(r) to obtain for
the scattering amplitude

F=23 [dVngexpli(G— Ak) - r] . (20)
G

When the scattering vector Ak is equal to a particular reciprocal lattice vector,

Bt

the argument of the exponential vanishes and F = Vng. It is a simple exercise
(Problem 4) to show that F is negligibly small when Ak differs significantly
from any reciprocal lattice vector.

In elastic scattering of a photon its energy #w is conserved, so that the
frequency o’ = ck’ of the emergent beam is equal to the frequency of the inci-
dent beam. Thus the magnitudes k and k' are equal, and k* = k’%, a result that
holds also for elastic scattering of electron and neutron beams. From (21) we
found Ak = G or k + G = k', so that the diffraction condition is written as
(k + G? = k% or
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This is the central result of the theory of elastic scattering of waves in a
periodic lattice. If G is a reciprocal lattice vector, so is —G, and with this sub-
stitution we can write (22) as

This particular expression is often used as the condition for diffraction.

Equation (23) is another statement of the Bragg condition (1). The result
of Problem 1 is that the spacing d(hkl) between parallel lattice planes that are
normal to the direction G = hb; + kb, + lb, is d(hkl) = 27/\G|. Thus the
result 2k - G = G® may be written as

2(2ar/A) sin @ = 2w/d(hkl) |

or 2d(hkl) sin § = A. Here @ is the angle between the incident beam and the
crystal plane.

The integers hkl that define G are not necessarily identical with the in-
dices of an actual crystal plane, because the hk! may contain a common factor
n, whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

2d sin @ =nA | (24)

where d is the spacing between adjacent parallel planes with indices h/n,
k/n, Un.

Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations. These
are valuable because of their geometrical representation. Take the scalar prod-
uct of both Ak and G successively with a,, a,, a;. From (14) and (15) we get

a, - Ak = 270, a, * Ak = 27, ay - Ak = 27, . (25)

These equations have a simple geometrical interpretation. The first equation
a; + Ak = 27v; tells us that Ak lies on a certain cone about the direction of a,.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about a;. Thus, at a reflection
Ak must satisfy all three equations; it must lie at the common line of intersec-
tion of three cones, which is a severe condition that can be satisfied only by
systematic sweeping or searching in wavelength or crystal orientation—or by
sheer accident.

A beautiful construction, the Ewald construction, is exhibited in Fig. 8.
This helps us visualize the nature of the accident that must occur in order to
satisfy the diffraction condition in three dimensions.
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Ptk . b

Figure 8 The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the dircction of the incident x-ray beam, and the origin is chosen such that k termi-
nates at any reciprocal lattice point. We draw a sphere of radius k = 2m/A about the origin of k.
A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.
The sphere as drawn intercepts a point connected with the end of k by a reciprocal lattice vector
G. The diffracted x-ray beam is in the direction k’ = k + G. The angle 0 is the Bragg angle of
Fig. 2. This construction is dve to P. P. Ewald.

BRILLOUIN ZONES

Brillouin gave the statement of the diffraction condition that is most
widely used in solid state physics, which means in the description of electron
energy band theory and of the elementary excitations of other kinds. A
Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lat-
tice. (The construction in the direct lattice was shown in Fig. 1.4.) The
Brillouin zone gives a vivid geometrical interpretation of the diffraction condi-
tion 2k * G = G? of Eq. (23). We divide both sides by 4 to obtain

k-(3G)=(;:G)?. (26)

We now work in reciprocal space, the space of the k’s and G’s. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direcdon k — G, as we see from (19) with Ak = —G. Thus the
Brillouin construction exhibits all the wavevectors k which can be Bragg-
reflected by the crystal.
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Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lattice
vector Gg connects points OC; and Gy, connects OD.
Two-planes 1 and 2 are drawn which are the perpendic-
ular biseetors of G and Gp, respectively. Any vector
from the origin to the plane I, such as k,, will satisfy the
diffraction condition k; * (3 G¢) = (3 Gc)%. Any vector
from the origin te the plane 2, such as ky, will satisfy the
diffraction condition k; * & Gp,) = (2 Gp)%

Figure 9b Square reciprocal lattice with reciprocal
lattice vectors shown as fine black lines. The lines
shown in white are perpendicular bisectors of the rec-
iprocal lattice vectors. The central square is the small-
est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-
tive cell of the reciprocal lattice. Tt is called the first
Brillouin zone.

The set of planes that are the perpendicular bisectors of the reciprocal
lattice vectors is of general importance in the theory of wave propagation in
crystals: A wave whose wavevector drawn from the origin terminates on any of
these planes will satisfy the condition for diffraction. These planes divide the
Fourier space of the crystal into fragments, as shown in Fig. 9b for a square
lattice. The central square is a primitive cell of the reciprocal lattice. It is a
Wigner-Seitz cell of the reciprocal lattice.

The central cell in the reciprocal lattice is of special importance in the the-
ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular bi-

sectors of the reciprocal lattice vectors drawn from the origin. Examples are

shown in Figs. 10 and 11.

Historically, Brillouin zones are not part of the language of x-ray diffrac-
tion analysis of crystal structures, but the zones are an essential part of the
analysis of the electronic energy-band structure of erystals.

Reciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as

the set

a, =dax ;

a =ay ;

a3 =az . (27a)
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Figure 10 Construction of the first Brillouin
zone for an oblique lattice in two dimensions. We
first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first Bril-
J louin zoue.

Figure 11 Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to 27/a. The shortest reciprocal lattice vectors from the origin are b and
—b. The perpendicular bisectors of these vectors form the boundaries of the first Brillouin zone.
The boundaries are at k = *n/a.

Here %,y, 2 are orthogonal vectors of unit length. The volume of the cell is
a, * a, X a3 = a°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

b, = Cn/a)x ; b, = 2w/a)y ; b, = (27/a)z . (27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice
constant 27/a.

33



w ik s
fosteny ol s

Uil =
;,w%&éﬁ%ﬂwﬁ&&fa
L

Nag | Yy

s b

E Figure 13 First Brillouin zone of the body-
Figure 12 Primitive basis vectors of the body-ventered centered cubic lattice. The figute is a regular
rhombie dodecahedron.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors *b,, +b,, =b, at their midpoints:

+ih, = =(w/a)R ; *3by = *(ma)y ; +iby=*(ma)z . (28)

The six planes bound a cube of edge 27/a and of volume (2m/a)®; this cube is
the first Brillouin zone of the sc crystal lattice.

Reciprocal Lattice to bee Lattice
The primitive translation vectors of the bece lattice (Fig. 12) are
ay=za(-x+y+72) ; ay=zak—y+2); a=zax+y—12), (29)

where a is the side of the conventional cube and X, y, z are orthogonal unit
vectors parallel to the cube edges. The volume of the primitive cell is

V=|a a,Xas|=3d" . (30)

The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, = @2m/a)y + 2) ; b, = 27/a)(x + Z) ; b = 2m/a)x +y) . (31)

Note by comparison with Fig. 14 (p. 37) that these are just the primitive
vectors of an fec lattice, so that an fcc lattice is the reciprocal lattice of the bee
lattice.

The general reciprocal lattice vector is, for integral v,, v, v,

G = lel + Uzbz + 1)31)3 = (277/0)[(1)2 -+ Us)i + (,Dl + U3)§’ + (1)1 + 02)%] . (32)
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Figure 14 Primitive basis vectors of the
face-centered cubic lattice.

The shortest G’s are the following 12 vectors, where all choices of sign are
independent:

(2m/a)(*y +2) ; 2mla)(xx £12) ; (2m/a)(Zx £ y) . (33)

One primitive cell of the reciprocal lattice is the parallelepiped described
by the b;, by, by defined by (31). The volume of this cell in reciprocal space
is b, - by X by = 2(27/a)>. The cell contains one reciprocal lattice point,
because each of the eight corner points is shared among eight parallelepipeds.
Each parallelepiped contains one-eighth of each of eight corner points (see
Fig. 12).

Another primitive cell is the central (Wigner-Seitz) cell of the reciprocal
lattice which is the first Brillouin zone. Each such cell contains one lattice
point at the central point of the cell. This zone (for the bece lattice) is bounded
by the planes normal to the 12 vectors of Eq. (33) at their midpoints. The zone
is a regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13.

Reciprocal Lattice to fec Lattice

The primitive translation vectors of the fce lattice of Fig. 14 are

a1=éa(§'+ z) ; azI%a(i’ri) ; as=%ﬂ(ﬁ+§’> : (34)
The volume of the primitive cell is
V= |a1-a,2><a3(=ia3 . (35)
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41/a

Figure 15  Brillouin zones of
the face-centered cubic lattice.
The cells are in reciprocal space,
and the reciprocal lattice is body
centered.

The primitive translation vectors of the lattice reciprocal to the fec
lattice are

b, = Qala)—x+y+1z) ; b, = Qm/a)x —y+2) ;

by = 2ma)x +y—7) . (36)

These are primitive translation vectors of a bee lattice, so that the bece lattice is
reciprocal to the fec lattice. The volume of the primitive cell of the reciprocal
lattice is 4(27/a)’.

The shortest G’s are the eight vectors:

Qmja)*x*yt7Z) . (37)

The boundaries of the central cell in the reciprocal lattice are determined
for the most part by the eight planes normal to these vectors at their
midpoints. But the corners of the octahedron thus formed are cut by the
planes that are the perpendicular bisectors of six other reciprocal lattice
vectors:

(Om/a)(x2x) ; (2m/a)(£2y) ; (Om/a)(*2z) . (38)

Note that (277/2)(2x) is a reciprocal lattice vector because it is equal to by + bs.
The first Brillouin zone is the smallest bounded volume about the 6rigin, the
truncated octahedron shown in Fig. 15. The six planes bound a cube of edge
47r/a and (before truncation) of volume (47/a)°.
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FOURIER ANALYSIS OF THE BASIS

When the diffraction condition Ak = G of Eq. (21) is satisfied, the scatter-
ing amplitude (18) for a crystal of N cells may be written as

Fo = NJ ] dV n(r) exp(—iG 1) = NS¢ . (39)

The quantity S¢ is called the structure factor and is defined as an integral
over a single cell, with r = 0 at one corner.

Often it is useful to write the electron concentration n(r) as the super-
position of electron concentration functions n; associated with each atom j
of the cell. If r; is the vector to the center of atom j, then the function
ny(r — 1;) defines the contribution of that atom to the electron concentration
at r. The total electron concentration at r due to all atoms in the single cell is

the sum
n(r) = ilnj(r = 1}) (40)
=

over the s atoms of the basis. The decomposition of n(r) is not unique, for we
cannot always say how much charge density is associated with each atom. This
is not an important difficulty. .

The structure factor defined by (39) may now be written as integrals over
the s atoms of a cell:

Sc=zdenj(r— rj) exp(—iG - r)
J

(41)
=3 exp(~iG * 1) AV n,(p) exp(—iG - p) ,
J

where p = r — r; We now define the atomic form factor as

integrated over all space. If n,(p) is an atomic property, f; is an atomic property.
We combine (41)and (42) to obtain the structure factor of the basis in
the form

S¢ =2 f exp(—iG 1)) . (43)
J

The usual form of this result follows on writing for atom j:

r; = xa) + Yy t Za, (44)
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as in (1.2). Then, for the reflection labelled by vy, vy, v3, we have

G ;= (01, + v3b, + v3by) « (xa, + Yo T Zyag) (45)
= 27(pyy; + vgy; + vz

so that (43) becomes

Salvwgvy) = 2)5 exp{ —i2m(oy; + vgy; + )] . (46)
J

The structure factor S need not be real because the scattered intensity will
involve $*S, where S* is the complex conjugate of S so that 55 is real.

Structure Factor of the bee Lattice

The bece basis referred to the cubic cell has identical atoms at 2; = y; =
= Oand at x, = y, = 2, = 3. Thus (46) becomes

S(vy0gvq) =f[1 + CXP[_iW(U1 +oy+ o))}, (47)

where f is the form factor of an atom. The value of S is zero whenever
the exponential has the value —1, which is whenever the argument
is —t7r X (odd integer). Thus we have

§$=0 when v; + v + v3 = odd integer ;
S=2f  whenv, + vy + v; = even integer .

Metallic sodium has a bec structure. The diffraction pattern does not con-
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and
(222) will be present; here the indices (v,0403) are referred to a cubic cell. What
is the physical interpretation of the result that the (100) reflection vanishes?
The (100) reflection normally occurs when reflections from the planes that
bound the cubic cell differ in phase by 2. In the bec lattice there is an inter-
vening plane (Fig. 16) of atoms, labeled the second plane in the figure, which is
equal in scattering power to the other planes. Situated midway between them,
it gives a reflection retarded in phase by m with respect to the first plane,
thereby canceling the contribution from that plane. The cancellation of the
(100} reflection occurs in the bee lattice because the planes are identical in
composition. A similar cancellation can easily be found in the hep structure.

Structure Factor of the fcc Lattice

The basis of the fce structure referred to the cubic cell has 1dent1cal atoms
at 000; 033; 303; 550. Thus (46) becomes

S(vwew,) = ﬁl + expl—im(vy + v3)] + exp[~im(v; + v;)]

(48)
+ exp[ —im(v; + o))} .
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Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.
The phase difference between successive plapes is 1, so that the reflected amplitude from two
adjacent planesis 1 + ¢ =1 —1=0.

If all indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd multi-
ples of —im and S will vanish. If only one of the integers is odd, the same argu-
ment applies and S will also vanish. Thus in the fcc lattice no reflections can
occur for which the indices are partly even and partly odd.

The point is beautifully illustrated by Fig. 17: both KCl and KBr have an
fee lattice, but n(r) for KCI simulates an sc lattice because the K* and Cl~ ions
have equal numbers of electrons.

Atomic Form Factor

In the expression (46) for the structure factor, there occurs the quantity fj
which is a measure of the scattering power of the jth atom in the unit cell. The
value of f involves the number and distribution of atomic electrons, and the
wavelength and angle of scattering of the radiation. We now give a classical
calculation of the scattering factor.

The scattered radiation from a single atom takes account of interference
effects within the atom. We defined the form factor in (42):

]5 =[dv nj(r) exp(—iG - r) , (49)

with the integral extended over the electron cencentration associated with a
single atom. Let r make an angle o with G; then G - r = Gr cos a. If the elec-
tron distribution is spherically symmetric about the origin, then

fi=2m[dr 7 d(cos @) ny(r) exp(—iGr cos a)

=27 [ dr Pnfr) - oo — o™
J iGr ’

4]
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Figure 17 Comparison of x-ray reflections from KCl (220)
and KBr powders. In KCl the numbers of clectrons
of K* and CI” ions are equal. The scattering ampli-
tudes fAIK*) and A{Cl™) are almost exactly equal, so
that the crystal looks to x-rays as if it were a |
monatomic simple cubic lattice of lathce constant (420) (222) (111)
/2, Only even integers oéeur in the reflection indices (400) -
when these are based on a cubic lattice of lattice con- (331) (811)
stant . In KBr the form factor of Br™ is quite differ- ) ——1"
ent to that of K*, and all reflections of the fec 80° 70° 60° 50° 40° 30° 20°
~—20

lattice are present. (Courtesy of R. van Nordstrand.)

after integration over d(cos a) between —1 and 1. Thus the form factor is

given by

i

If the same total electron density were concentrated at r = 0, only Gr = 0
would contribute to the integrand. In this limit (sin Gr)/Gr = 1, and

]_‘} = 47dernj(r)12 =7, (51)

the number of atomic electrons. Therefore f is the ratio of the radiation ampli-
tude scattered by the actual electron distribution in an atom to that scattered
by one electron localized at a point. In the forward direction G = 0, and f
reduces again to the value Z.

The overall electron distribution in a solid as seen in x-ray diffraction is
fairly close to that of the appropriate free atoms. This statement does not
mean that the outermost or valence electrons are not redistributed somewhat
in forming the solid; it means only that the x-ray reflection intensities are
represented well by the free atom values of the form factors and are not very
sensitive to small redistributions of the electrons.



2 Reciprocal Lattice

SUMMARY

o Various statements of the Bragg condition:
2d sin 6 =nA ; Ak=G ; 2%k -G =G> .

o Laue conditions:

a; * Ak = 270, ; a,* Ak =27, ; ay - Ak = 27v, .
e The primitive translation vectors of the reciprocal lattice are
a; X a4 a; X a, a, X a,
= — T —— 2 PR A = 2 _
b, zwal'aZXa?, ’ b, ’"al‘azx% ’ b, ’”al-aQXaa

Ilere a;, ay, a, are the primitive translation vectors of the crystal lattice.
e A reciprocal lattice vector has the form
G =u0,b, + v.b; + v3by,
where v, vy, v4 are integers or zero.

o The scattered amplitude in the direction k'’ = k + Ak = k + G is propor-
tional to the geometrical structure factor:

S¢c= Ej]‘ exp(—ir; - G) = 2]3 exp[—i27r(xjvl +yp, + zj1.>3)] s

where j runs over the s atoms of the basis, and f; is the atomic form factor
(49) of the jth atom of the basis. The expression on the right-hand side is
written for a reflection (v,0,03), for which G = v;b, + v;by + v4b;.

e Any function invariant under a lattice translation T may be expanded in a
Fourier series of the form

n(r) = % ng exp(iG - r) .

e The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice. Only waves whose wavevector k drawn from the origin terminates on
a surface of the Brillouin zone can be diffracted by the crystal.

o Crystal lattice First Brillouin zone
Simple cubic Cube
Body-centered cubic Rhombic dodecahedron (Fig. 13)
Face-centered cubic Truncated octahedron (Fig. 15)

Problems

1. Interplanar separation. Consider a plane hkl in a crystal lattice. (a) Prove that the
reciprocal lattice vector G = kb, + kb, + Ib; is perpendicular to this plane. (b)
Prove that the distance between two adjacent parallel planes of the lattice is
d(hkl) = 27/|G/|. (c) Show for a simple cubic lattice that d* = a*/(h? + k* + P2,

43



44

2.

ot

Hexagonal space lattice. The primitive translation vectors of the hexagonal space .
lattice may be taken as

a, = (3Y%a/2)% + (a/2)y ; a, = —(3%/2)% + (a2)y a,=cz .

(a) Show that the volume of the primitive cell is (3V%/2)a%.
(b) Show that the primitive translations of the reciprocal lattice are

b, = 2a/3%a)x + (2n/a)y ; b, = —(2m/3"%a)} + 2n/a)y ; b, = 27/c)z ,

so that the lattice is its own reciprocal, but with a rotation of axes.
(¢) Describe and sketch the first Brillouin zone of the hexagonal space lattice.

. Volume of Brillouin zone. Show that the volume of the first Brillouin zone is

(2m)*/V,, where V, is the volume of a crystal primitive cell. Hint: The volume of a
Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier
space. Recall the vector identity (¢ X a) X (a X b) = (¢-a X bja.

. Width of diffraction maximum. We suppose that in a linear crystal there are

identical point scattering centers at every lattice point p,, = ma, where m is an inte-
ger. By analogy with (20), the total scattered radiation amplitude will be proportional
to F = 3 exp[—ima - Ak]. The sum over M lattice points is

_ 1 —exp[—iM(a - AK]
T 1-exp[—i(a-AK)] °

by the use of the series

Ml M

1—2 '
(a) The scattered intensity is proportional to |F|%. Show that

sin®1 M(a - Ak)

sin®3 (a - Ak)
{b) We know that a diffraction maximum appears when a - Ak = 2h, where h is an
integer. We change Ak slightly and define € in a - Ak = 27h + € such that € gives
the position of the first zero in sin ;M(a - Ak). Show that € = 221/M, so that the width
of the diffraction maximum is proportional to 1/M and can be extremely narrow for
macroscopic values of M. The same result holds true for a three-dimensional crystal.

[Fp=FF =

Structure factor of diamond. The crystal structure of diamond is described in
Chapter 1. The basis consists of eight atoms if the cell is taken as the conventional
cube. (a) Find the structure factor § of this basis. (b) Find the zeros of § and show
that the allowed reflections of the diamond structure satisfy v, + v, + vy = 4n,
where all indices are even and n is any integer, or else all indices are odd (Fig. 18).
(Notice that h, k, I may be written for v,, v,, v; and this is often done.)

. Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the

number density is n(r} = (mad) ! exp(—2r/a,), where a,, is the Bohr radius. Show that
the form factor is f; = 16/(4 + G%a})>.




2 Reciprocal Lattice
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Figure 18 Neutron diffraction pattern for powdered diamond. (After G. Bacon.)

!

7. Diatomic line. Consider a line of atoms ABAB .. . AB, with an A—B bond length
of a. The form factors are f,, fp for atoms A, B, respectively. The incident beam of
x-rays is perpendicular to the line of atoms. (a) Show that the interference condition
is nd = a cos 0, where 6 is the angle between the diffracted beam and the line of
atoms. (b) Show that the intensity of the diffracted beam is proportional to |f, — f3[*
for n odd, and to |f, + f;[? for n even. (¢) Explain what happens if f, = f5.
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Figure 1 The principal types of crystalline binding. In (a) neutral atoms with closed electron
shells are bound together weakly by the van der Waals forces associated with fluctuations in the
charge distributions. In (b) electrons are transferred from the alkali atomns to the halogen atoms,
and the resulting ions are held together by attractive electrostatic forces between the posijtive and
negative ions. In (c) the valence electrons are taken away from each alkali atom to form a commu-
nal electron sea in which the positive ions are dispersed. In (d) the neutral atoms are bound to-

Possibility of ionic crystals R'R™
Linear ionic crystal

Cubic ZnS structure

Divalent ionic crystals

Young’s modulus and Poisson’s ratio
Longitudinal wave velocity
Transverse wave velocity
Effective shear constant
Determinantal approach
General propagation direction
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gether by the overlapping parts of their electron distributions.
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CHAPTER 3: CRYSTAL BINDING AND ELASTIC CONSTANTS
]

In this chapter we are concerned with the question: What holds a crystal
together? The attractive electrostatic interaction between the negative charges
of the electrons and the positive charges of the nuclei is entirely responsible
for the cohesion of solids. Magnetic forces have only a weak effect on cohe-
sion, and gravitational forces are negligible. Specialized terms categorize dis-
tinctive situations: exchange energy, van der Waals forces, and covalent bonds.
The observed differences between the forms of condensed matter are caused
in the final analysis by differences in the distribution of the outermost elec-
trons and the ion cores (Fig. 1).

The cohesive energy of a crystal is defined as the energy that must be
added to the crystal to separate its components into neutral free atoms at rest,
at infinite separation, with the same electronic configuration. The term lattice
energy is used in the discussion of ionic crystals and is defined as the energy
that must be added to the crystal to separate its component ions into free ions
at rest at infinite separation.

Values of the cohesive energy of the crystalline elements are given in
Table 1. Notice the wide variation in cohesive energy between different
columns of the periodic table. The inert gas crystals are weakly bound, with
cohesive energies less than a few percent of the cohesive energies of the ele-
ments in the C, Si, Ge . . . column. The alkali metal crystals have intermediate
values of the cohesive energy. The transition element metals (in the middle
columns) are quite strongly bound. The melting temperatures (Table 2) and
bulk modulii (Table 3) vary roughly as the cohesive energies.

CRYSTALS OF INERT GASES

The inert gases form the simplest crystals. The electron distribution is
very close to that of the free atoms. Their properties at absolute zero are sum-
marized in Table 4. The crystals are transparent insulators, weakly bound, with
low melting temperatures. The atoms have very high ionization energies (see
Table 5). The outermost electron shells of the atoms are completely filled, and
the distribution of electron charge in the free atom is spherically symmetric.
In the crystal the inert gas atoms pack together as closely as possible’: the

'Zero-point motion of the atoms (kinetic energy at absolute zero) is a quantum effect that plays
a dominant role in He® and He®. They do not solidify at zero pressure even at absolute zero temp-
erature. The average fluctuation at 0 K of a He atom from its equilibrium position is of the order of
30 to 40 percent of the nearest-neighbor distance. The heavier the atom, the less important the zero-
point effects. If we omit zero-point motion, we calculate a molar volume of 9 cm® mol™ for solid
helium, as compared with the observed values of 27.5 and 36.8 cm® mol ™ for liquid He* and liquid
He®, respectively.
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Table 1 Cohesive energies

Energy required to form separated neutral atoms in their ground
electronic state from the solid at 0 K at 1 atm. The data were supplied by § 561 _1711
| Prof. Leo Brewer.

= ©
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Mn
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Li Be Table 2 Melting points, in K. B c N o F Ne
453.7 | 1562 (After R. H. Lamoreaux 2365 63.15 | 54.36 §53.48 | 24.56
GEIREIReER RN EFEIREIE Iz
Na Mg Al Si P S cl Ar
371.0] 922 933.5|1687 |w 317|388.4 [172.2 | 83.81
r 863
K Ca |Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga |Ge |As Se Br Kr
336.3| 1113|1814 | 1946 2202 |2133 |1520 |1811 | 1770 |1728 |1358 |692.7 | 302.9 [1211 |1089 |424 |265.9 |115.8
Rb Sr Y 2r Nb Mo ([Tc Ru Rh Pd Ag |Cd In Sn Sb Te | Xe
312.6 | 1042 | 1801 | 2128 [2750 |2895 [2477 |2527 |2236 [1827 |1235 |594.3 | 429.8 |505.1 {903.9 | 722.7 | 386.7 | 161.4
Cs Ba |La Hf Ta w Re Os |ir Pt Au Hg T Pb |Bi Po At Rn
301.6| 1002 | 1194 | 2504 |3293 |3695 |3459 |3306 |2720 |2045 |1338 |234.3 | 577 |600.7 |544.6 | 527
Fr Ra |Ac .
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Table 3 Isothermal bulk modulii and compressibilities at room

Huw temperature

10.002 After K. Gschneidner, Jr., Solid State Physics 16, 275-426 (1964); several

500 ¢ data are from F. Birch, in Handbook of physical constants, Geological Soci-
ety of America Memoir 97, 107-173 (1966). Original references should be

consulted when values are needed for research purposes. Values in paren- | g C
.theses are estimates. Letters in parentheses refer to the crystal form. Let-
0997 ters in brackets refer to the temperature:

N O F {Ne tdl

[a] =77 K; [b]"273K [c]—l d]= K, e]
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Hg @ | TI Pb
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é% 5) Ce Tb Dy Ho | Er
4y 0239} 0.
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{zstifzs0 252 fi2as f 2.




3 Crystal Binding

Table 4 Properties of inert gas crystals
(Extrapolated to 0 K and zero pressure)

Parameters in

N, G T
n?‘:lghbor energy ' tential
distance, - s Melting of free €, o,
inA kJ/mol eV/atom  point, K atom, eV  in 10" %erg in &
L e R A S
He (liquid at zero pressure) 24.58 14 2.56
Ne 3.13 1.88 0.02 24.56 21.56 50 2.74
Ar 3.76 7.74 0.080 83.81 15.76 167 3.40
Kr 4.01 11.2 0.116 115.8 14.00 225 3.65
Xe 4.35 18.0 0.17 161.4 12,13 320 3.98

crystal structures (Fig. 2) are all cubic close-packed (fcc), except He®
and He*.

What holds an inert gas crystal together? The electron distribution in the
crystal is not significantly distorted from the electron distribution around the
free atoms because not much energy is available to distort the free atom
charge distributions. The cohesive energy of an atom in the crystal is only
1 percent or less of the ionization energy of an atomic electron. Part of this
distortion gives the van der Waals interaction.

Van der Waals-London Interaction

Consider two identical inert gas atoms at a separation R large in compari-
son with the radii of the atoms. What interactions exist between the two neu-
tral atoms? If the charge distributions on the atoms were rigid, the interaction
between atoms would be zero, because the electrostatic potential of a spheri-
cal distribution of electronic charge is canceled outside a neutral atom by the
electrostatic potential of the charge on the nucleus. Then the inert gas atoms
could show no cohesion and could not condense. But the atoms induce dipole
moments in each other, and the induced moments cause an attractive interac-
tion between the atoms.

As a model, we consider two identical linear harmonic oscillators 1 and 2
separated by R. Each oscillator bears charges *e with separations x, and x,, as in
Fig. 3. The particles oscillate along the x axis. Let p; and p, denote the momenta.
The force constant is C. Then the hamiltonian of the unperturbed system is
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