


Graduate Texts in Physics



Graduate Texts in Physics

Graduate Texts in Physics publishes core learning/teaching material for graduate- and
advanced-level undergraduate courses on topics of current and emerging fields within
physics, both pure and applied. These textbooks serve students at the MS- or PhD-level and
their instructors as comprehensive sources of principles, definitions, derivations, experi-
ments and applications (as relevant) for their mastery and teaching, respectively. Interna-
tional in scope and relevance, the textbooks correspond to course syllabi sufficiently to serve
as required reading. Their didactic style, comprehensiveness and coverage of fundamental
material also make them suitable as introductions or references for scientists entering, or
requiring timely knowledge of, a research field.

Series Editors

Professor William T. Rhodes
Florida Atlantic University
Department of Computer and Electrical Engineering and Computer Science
Imaging Science and Technology Center
777 Glades Road SE, Room 456
Boca Raton, FL 33431, USA
E-mail: wrhodes@fau.edu

Professor H. Eugene Stanley
Boston University
Center for Polymer Studies
Department of Physics
590 Commonwealth Avenue, Room 204B
Boston, MA 02215, USA
E-mail: hes@bu.edu

Professor Richard Needs
Cavendish Laboratory
JJ Thomson Avenue
Cambridge CB3 0HE, UK
E-mail: rn11@cam.ac.uk

Please view available titles in Graduate Texts in Physics on series homepage
http://www.springer.com/series/8431/



Theoretical Mechanics

Theoretical Physics 1

123

Reiner M. Dreizler · Cora S. Lüdde



Prof. Dr. Reiner M. Dreizler
Universität Frankfurt
Institut für Theoretische Physik
Max-von-Laue-Str. 1
60438 Frankfurt/Main
Germany
dreizler@th.physik.uni-frankfurt.de

Dipl. Phys. Cora S. Lüdde
Universität Frankfurt
Institut für Theoretische Physik
Max-von-Laue-Str. 1
60438 Frankfurt/Main
Germany
cluedde@th.physik.uni-frankfurt.de

Additional material to this book can be downloaded from http://extras.springer.com
Password: 978-3-642-11137-2

ISSN 1868-4513 e-ISSN 1868-4521
ISBN 978-3-642-11137-2 e-ISBN 978-3-642-11138-9
DOI 10.1007/978-3-642-11138-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010936710

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



PREFACE

This series of texts on Theoretical Physics is based on lecture notes of courses
given at the Goethe-University in Frankfurt am Main. It will finally contain
five volumes covering the subjects

• Theoretical Mechanics
• Electrodynamics and Special Theory of Relativity
• Quantum Mechanics (two volumes)
• Thermodynamics and Statistical Physics.

Mechanics is the basic field of physics. This subject deals with the phys-
ical aspects of nature which are more directly accessible to observation. It
provides for this reason a solid foundation of most of the concepts used in
the description of nature. Theoretical Mechanics is also the area of physics
which was the first to be developed and brought to a conclusion on a high
mathematical level. The beginning of the development in the 16th and the
17th centuries is characterised by a more systematic approach to the collec-
tion of experimental data and the desire to unravel the basic principles active
in nature. The experimental side can be documented with the observations of
Tycho de Brahe and of Johann Kepler. As examples of the more theoretical
efforts the writings of Galilei Galileo and of Isaac Newton may be quoted.
These endeavours prepared the ground for the development of more advanced
mathematical methods as the infinitesimal and the variational calculus (in
particular by the Bernoulli brothers as well as L. Euler and G. Leibniz), which
led to a rapid development and formalisation of mechanics. This development
reached a final form with the work of J. d’Alembert, J. Comte de Lagrange
and Sir W.R. Hamilton at the end of the 18th and the beginning of the 19th
centuries.

The first volume (and additional volumes) are organised as follows: the
main text is supported by three substantial ’appendices’

• a Mathematical Supplement,
• a Collection of 71 Problems for private study

and
• a set of Auxilliary Remarks on selected points,

which can be accessed/downloaded at the location
http://extras.springer.com



via the ISBN of this book.
The 270 page Mathematical Supplement represents our credo that a very

close connection of the physical and mathematical material is necessary for a
successful understanding of theoretical physics. This was implemented in the
original lectures. In a textbook it seemed preferable to separate the mathe-
matical tools from the main text. The mathematical material is presented in
a form that is adapted to the needs of physics students. At all relevant points
of the main text appropriate references to the chapters and sections of the
mathematical supplement are indicated by Math.Chap. x.y .

The theory lectures at our university start in the first term. This requires
an adiabatic transition to the ’higher’ subjects of mechanics. The resulting,
slower introduction to theoretical mechanics proper has been retained in the
book for didactic reasons and as a means to support an independent start of
studies. The first chapter of the book provides a general overview of the areas
of physics. The second chapter introduces, in a simpler fashion, the basic
kinematic concepts of mechanics. The discussion of the basic conservation
laws in chapter 3 also uses initially elementary means but closes with a full
application of methods of vector analysis. Starting with the fourth chapter
the presentation refrains from compromises with respect to mathematical
necessities. On the other hand it should be mentioned that the ever present
differential equations are already introduced in the second chapter and are
extensively used thereafter.

A Collection of Problems, covering the material of the main text, can also
be found on the server. They are marked by the statement Probl. x.y at
the relevant positions of the main text. This collection covers the material
of chapters 2 to 6. It has been prepared in a way that utilises the electronic
medium fully so that it can be used for private studies. The core of each prob-
lem is a set of consecutive questions and answers which guide the reader step
by step towards the solution(s). For those not interested in this guidance, a
condensed summary of the solution of each problem and the steps towards
it is offered. The electronic medium makes it possible to present more vivid
animation or presentation of the material. Also included are JAVA applets,
which are to be used as theoretical laboratories. Students are invited to in-
vestigate simpler or more advanced problems of motion by variation of the
relevant parameters.

The third ’appendix’ offers some aid via a limited number of auxiliary cal-
culations (rather than the statement ’after a short calculation one obtains ...’)
as well as some additional comments. The relevant passages of the text are
highlighted by D.tail x.y .

We thank our families for patience, understanding and support during
this project. We also thank the team of the Springer Verlag in Heidelberg for
the friendly cooperation and technical support.

VI Preface

Frankfurt/Main Reiner Dreizler 
September 2010 Cora Lüdde 
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1 A First Survey

Mechanics deals with ’ordinary objects’ moving at ’moderate velocities’
(as for example colliding steel balls or planets orbiting around the sun). El-
ementary particle physics, a topic that will only be discussed very briefly in
this introductory course, addresses the properties of minute particles moving
in general at much higher velocities. These statements suggest that the areas,
which are of interest in physics, can be fitted into a diagram which is char-
acterised by a length and a velocity scale1 (Fig. 1.1). The concept of length
(L) has to be interpreted relatively loosely. As a length one should consider
the size of objects (e.g. the diameter of elementary particles, of atoms or of
the steel balls and planets mentioned above) as well as the specification of
wavelengths (e.g. of water waves, sound waves or electromagnetic waves) or
the distances between celestial objects.

2813–5–13
10101010

normal objects

v

L [cm]

tachyons ?

class. physicsqph astrophysics

cosmologierel. class. physicsrel. qph

c

Fig. 1.1. The basic diagram

The length-scale that is needed is quite large. It begins at 10−13cm (the
ten billionth - in American usage: the ten trillionth - fraction of a cm). This
length corresponds approximately to the diameter of a proton, one of the
building blocks of atomic nuclei. It represents the smallest distance that has
been measured explicitly so far. The scale ends at 1028 cm. This distance
represents the present estimate of the diameter of the universe. Within these
1 following Reference [1]

R.M. Dreizler, C.S. Lüdde, Theoretical Mechanics, Graduate Texts in Physics,  
DOI 10.1007/978-3-642-11138-9_1, © Springer-Verlag Berlin Heidelberg 2010 



2 1 A First Survey

boundaries all the objects that are addressed in physics can be found. For a
subdivision of the scale (in order to cover the enormous range a logarithmic
scale should preferably be used) the following examples could be quoted:

10−12 cm −→ diameter of atomic nuclei
10−8 cm −→ diameter of atoms
10−6 cm −→ diameter of large molecules
10−5 cm −→ resolution of the best optical microscopes,

corresponding to the wavelength of visible light
10−1 cm −→ grain of sand
102 cm −→ man (as a measure of all things)
109 cm −→ diameter of the earth
1013 cm −→ the distance sun to earth
1017 cm −→ the distance earth to the next star (α - Centauri).

The range between 10−5 to 1013 cm (approximately) is the range of the
’ordinary objects’ of mechanics.

The velocity (v) scale starts at zero. It ends (by necessity, as is believed
on the basis of the special theory of relativity) with the speed of light. This
velocity is

c = (2.997925 ± 0.000001) · 1010 cm/s
≈ 3 · 1010 cm/s = 300000 km/s
= 1.08 · 109 km/h.

By comparison with the velocity of light the velocity of most objects is rather
small

300 km/h ≈ 3 · 10−7c

10000 km/h ≈ 10−5c

105 km/h ≈ vearth around sun ≈ 10−4c.

If a linear scale is used to represent velocities, it is found that the three ex-
amples indicated are in close vicinity to the abscissa of the diagram. Material
objects with velocities close to the velocity of light can be found in cosmic
radiation. In the upper layers of the atmosphere, particles (e.g. muons charac-
terised by the Greek letter μ) are produced with velocities that come close to
the speed of light (vμ ≈ 0.995 c). Classical mechanics (with ordinary objects
at moderate velocities) is restricted to a small section of the basic diagram
(Fig. 1.1) in the vicinity of the abscissa.

Objects in the range below 10−5 cm (with a gradual transition at the
region of the boundary) have to be discussed in terms of quantum mechan-
ics, a subject that dominated the development of physics in the first half
of the 20th century. The fact that atoms are the building blocks of matter
was established around 1850 with the recognition of the periodic system of
elements. Atoms still constitute the elementary building blocks in chemical
reactions. The fact that atoms consist of a nucleus and a cloud of electrons
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was recognised in 1913. The relevant experiment was carried out by Geiger,
Marsden and Rutherford in Cambridge. In this experiment helium nuclei
(α-particles), which were available via the natural radioactivity of polonium,
were directed onto a thin gold foil. The significant observation was a strong

α

Au Fig. 1.2. Scattering of α−particles from a gold foil

backscattering of the α-particles. This is only possible if the α-particles hit
a ’solid object’. The strength of the backscattering even allowed an estimate
of the size of this object, the gold nucleus.

The era of nuclear physics experiments with accelerators started in 1932
with an investigation of the reaction

7
3Li + p −→ 4

2He + 4
2He

by Cockroft and Walton. When protons impinge on lithium, two helium nuclei
can be produced. The investigation of a large number of reactions involving
nuclei revealed that

neutrons (n), protons (p) −→ nucleus
electrons (e−) −→ electron cloud

}
atom

could be considered as the basic building blocks of nature. A fourth elemen-
tary particle, the photon (γ) - that is the quantum of light - was known at this
time and could be included, even though it plays a special role as mediator
of the electromagnetic interaction.

With the steady improvement of accelerator techniques and by analysis
of cosmic radiation the family of elementary particles has been extended. Up
to 1950 the list also contained (in sequence of their discovery)

• the antineutrino (ν̄e), which is associated with the electron (although it
was first conjectured rather than discovered),

• the positron (e+), the antiparticle of the electron,
• positively and negatively charged muons (μ±), close but more massive rel-

atives of the electron and the positron,
• the family of pions (π±,0),
• the kaon or K meson (K) and the Lambda particle (Λ).

By the year 1960 the number of elementary particles had grown to more
than 300. As it was found that a large number of processes involving elemen-
tary particles exists, as e.g.

β-decay: n −→ p + e− + ν̄e

photo production of pions: γ + n −→ p + π− ,
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it became obvious that all these elementary particles are, in fact, not elemen-
tary after all. They seem to be composed of more fundamental objects.

The decisive hint came from symmetry considerations (a popular game
in theoretical physics), in this case the properties of the symmetry group2

SU(3). Around 1970 the elementary particles were classified as

exchange particles (gauge particles) : γ
leptons (light particles) : e−, νe, μ

−, νμ

+ antiparticles
hadrons (strongly interacting particles) : π, n, p, ...

+ antiparticles .

The family of hadrons could be divided into mesons (particles of medium
mass, as e.g. the pion), and baryons (heavy particles, as e.g. the proton and
the neutron). On the basis of symmetry considerations the hadrons could be
arranged in so-called SU(3)-multiplets. There exists, for example, an octet
(indicated in Fig. 1.3), which contains the neutron and the proton as well as
the hyperons Lambda (Λ), Sigma (Σ0,∓) and the cascade particles (Ξ0,−).

− 0 +Σ Σ Λ Σ
3I

Y

0− ΞΞ

pn

Fig. 1.3. The relatives of the proton and
the neutron in the SU(3) classification of
elementary particles

This subfamily of elementary particles is characterised by the fact that all
members have comparable mass and additional similarities (not specified
here). They can be arranged into a specific pattern based on the so-called hy-
percharge (Y) and isospin (I3). It was soon realised that the smallest possible
family of the SU(3) classification scheme (with three members) did not seem
to exist. On the other hand, the larger families (multiplets) could be con-
structed, using the concepts of group theory, from the basic triplet. For this
reason attempts were undertaken to discover these three elementary particles
in nature. Their properties could be inferred, to a certain degree, from the
multiplet structures. They were named the three quarks (following a quota-
tion from Finnegans Wake by James Joyce). Less poetically they were later
distinguished by the names of up, down and strange. So far, quarks have
2 Three elementary texts on the theory of symmetry groups are indicated in the

list of references [2].
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not been observed directly. There is, however, sufficient indication of their
existence, for example from electron-proton collisions at high energies.

In the meantime (that is since about 1985) the list of elementary particles
contains the following entries:

gauge particles : γ, W±, Z0, g1, g2, . . . , g8

leptons : e−, μ−, τ−, νe, νμ, ντ + antiparticles

quarks : q1, q2, . . . , . . . , q18 + antiparticles.

• The gauge particles transmit the various basic interactions between leptons
and quarks. The photon is responsible for the electromagnetic interaction.
The gauge bosons, which have been named W and Z, transmit the weak
interaction and the 8 gluons generate the strong interaction between the
quarks.

• In addition to electron and muon a heavier lepton, the tauon, was discov-
ered in 1974. Each lepton is associated with a corresponding neutrino and
for each of the six particles there exists an antiparticle.

• The total number of quarks is 18. They are characterised by so-called ’inner
quantum numbers’: the ’flavour’ (6 flavours with the names up, down,
strange, charm, top and bottom) as well as a kind of charge, the ’colour’
(3 colours with arbitrary names, usually red, green and blue, referred to as
RGB).

Group theory demands a specific pattern for the composition of hadrons
from the basic units (the quarks): mesons, e.g. pions or the K mesons, con-
sist of a quark-antiquark pair (qq̄); baryons, for instance neutrons or protons,
contain three quarks (qqq). This pattern is realised in nature exactly as de-
manded by group theory.

Quite a number of aspects of the scenario described have not been ex-
plained so far. Nonetheless, the question can be raised: What are quarks
composed of? To date any answer to this question is rather speculative. On
the other hand, one point is certain. As experiments have to deal with the
resolution of very small spatial domains, an experimental answer to such
questions will turn out to be expensive. Loosely speaking, the cost is propor-
tional to the amount of energy needed, which is in turn inversely proportional
to the size of the domain to be resolved.

This first excursion into the world of quantum physics has introduced:

elementary particle, nuclear and atomic physics.

In addition to these fields the following could be considered:

molecular and solid state physics.

In all these branches of physics effects are encountered which cannot be ex-
plained in terms of everyday (classical) experience. The following introduc-
tory observations underline this statement:
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(a) A classical particle can be at rest at the lowest point of a ’valley’. It is
not possible to observe a quantum particle which is at rest at the bottom
of a ’valley’ (if the term ’valley’ is replaced by the term ’potential well’). A
quantum particle will oscillate, in a rather uncontrolled manner, around the
deepest point (Fig. 1.4). This is a consequence of the (Heisenberg) uncertainty
principle, an inherent property of quantum systems.

Fig. 1.4. Uncertainty principle: classical versus quantum particle

(b) If a classical particle moves around in a closed box with a velocity that
is not sufficient to penetrate through the walls, it will obviously stay within
the box (Fig. 1.5). A quantum particle, by contrast, can penetrate through
the ’walls’ even if this is not possible on the basis of energy considerations.
One example for the occurrence of such tunnel processes in nature is the
observation of the natural radioactivity of nuclei, as in the case of the α-decay
of polonium mentioned above.

Fig. 1.5. The tunnel effect

Relativistic physics is the proper frame for the discussion of situations in
which larger velocities play a role. The basic scenario is quite simple. Two
’observers’ (experimenters) move with respect to each other with a constant,
relative velocity (Fig. 1.6). Observer 1 could for example be on a train, while
Observer 2 is stationed on the embankment. They observe the same experi-
ment, for example, the motion of an object that is thrown up and comes down
due to gravity. The question which has to be addressed is the following. Can
a transformation law be formulated that allows the calculation of the tra-
jectory as seen by Observer 2, if the relative velocity v0 and the trajectory
registered by Observer 1 are known? It would then be possible to transcribe
the results of Observer 1 by analytical means, as indicated in the following
example. Observer 1 stands on a moving platform-car, throws an object ver-
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Fig. 1.6. Two coordinate systems in relative motion

(a) (b)

ov
as seen by Observer 1

ov
as seen by Observer 2

Fig. 1.7. Projectile movement

tically (from his point of view) into the air, finds that it moves vertically up
to the highest point and returns along the same trajectory. Observer 2, who
follows the experiment from the embankment, registers, as required by the
transformation law, that the trajectory of the object is a parabola (Fig. 1.7).

A transformation law that answers the question, the Galilei transforma-
tion, had been known long before Einstein. Nonetheless, Einstein raised the
question once more (in 1905), but with an additional twist: what is the form
of the transformation law if it is assumed that the speed of light has the same
value c for all observers who move uniformly with respect to each other? From
the point of view of everyday experience this assumption sounds absurd. Ev-
erybody knows that velocities are added. If someone moves with respect to
the ground with velocity v0 and sets an object in motion (in the same direc-
tion) with the velocity v , then the velocity of the object with respect to the
ground is v + v0 (Fig. 1.8).

v

ov
Fig. 1.8. Addition of velocities

This conjecture that Einstein used in the derivation of a new transfor-
mation law emerged from a classical experiment which was performed by
Michelson and Morley in Cleveland in 1880. The results obtained in 1880
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have since been confirmed by a large number of more refined experiments.
The experimental statement is: if the velocity v equals the speed of light,
then the sum of the two velocities is c and not c + v0.

The derivation of the corresponding transformation laws is simple enough
for the case of a constant relative velocity of the two observers. Only basic
concepts of mathematics are needed. The resulting ’special theory of rela-
tivity’ is for this reason readily understood from a mathematical point of
view. The consequences of Einstein’s transformation laws are, however, far
reaching. They have changed the conception of space and time (two basic
concepts of physics) in a dramatic fashion. For example, the law leads to the
statement, that the mass of an object changes with its speed v according to
the relation

m(v) =
m(v = 0)√
1 −

(v

c

)2
.

This formula seems to contradict normal experience. The contradiction arises,
however, from the fact that the change of the mass is too small to be detected,
even for rather large classical velocities. The mass of a rocket moving at
v = 10−5c ≈ 10000 km/h is increased to (by expansion with the binomial
formula3)

m(10−5c) ≈ m(0)(1 + 0.5
(v

c

)2

+ ...)

= m(0)(1 + 0.5 10−10)

= m(0)(1.00000000005) .

This increase in mass cannot be detected even in the most refined experiment.
For an object with v = 0.8 c one would, on the other hand, find

m(0.8 c) ≈ 1.67 · m(0) ,

that is, nearly a doubling of the mass of the object at rest. The curve m(v)
as a function of v is indicated in Fig. 1.9. The region, for which the change
of the mass cannot be detected, is called the classical region. The steep rise
of the curve for v → c explains why the velocity of light is considered to be a
natural limit of all velocities. A mass would attain the limiting value m → ∞
for v → c. This implies that this limit can not be reached.

Classical mechanics as well as quantum mechanics have to be modified
for situations with large velocities. The ramifications of relativistic mechanics
are not readily accessible in an earth bound laboratory. In order to observe
relativistic effects for macroscopic objects one has to use a laboratory that
includes outer space.
3 See Math.Chap. 1.3 in the Mathematical Supplement concerning series ex-

pansions.
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Fig. 1.9. The relativistic variation of the mass
of an object with velocity

There is another aspect to be considered. The assumption of a uniform
relative velocity leads to the special theory of relativity. For a discussion
of the more general situation, frames of reference that are accelerated with
respect to each other, the general theory of relativity is the proper tool. It
involves, for example, the statement that the acceleration due to gravity and
all other accelerations are fully equivalent. This statement is verified by the
observation and the interpretation of the advance of the perihelion of the
planet Mercury.

The domain of large dimensions is addressed in astrophysics. One of the
problems that inhibited astrophysics for many years was the restriction en-
forced by earth bound observation platforms. In the meantime a variety of
satellite missions such as

COBE COsmic Background Explorer for the exploration of the
cosmic background radiation

HUBBLE for images of very distant objects

ROSAT ROentgen SATellite for the discovery and survey of X-ray
sources

SOHO SOlar Heliospheric Observatory for the measurement of
data relating to the sun

and many others have collected a large amount of data concerning the uni-
verse.

As early as 1929 the American astronomer E. Hubble interpreted the red
shift of the spectral lines of stars as a Doppler shift. The Doppler shift is well
known in acoustics. The sound of the horn of a car or the whistle of a train
becomes deeper if the car or train moves away from a stationary observer.
The associated increase of the wavelength of sound corresponds to a red shift
of the (optical) spectral lines of distant stars. Hubble’s observation thus leads
to the conjecture of the expansion of the universe. One can imagine that the
earth is a point on a balloon that is blown up. All other points on the surface
of the balloon recede from this particular point. The expansion of the universe
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has, however, only been observed for a very limited period of time. With the
extrapolation to larger periods, thousands or millions of years, quite a number
of scenarios are possible. It could be that the size of the universe oscillates,
so that the present phase of expansion is followed by a phase of contraction.
It could also be possible that the universe was originally concentrated in a
small region with extremely high matter and energy density and that a ’Big
Bang’ is the reason for the present expansion.

An answer to the question, how the universe will develop, could possibly
be gleaned from the general theory of relativity. According to this theory
there exists a critical mass density ρc (mass/volume) of the universe. If the
actual density is lower than the critical one (ρ < ρc), then the attractive force
of gravity is not sufficient to stop the expansion. On the other hand, if the
mass density is larger than the critical value (ρ > ρc), then gravitation will
finally lead to a contraction of the universe. The value of the critical mass
density is not known very well. The estimate is

ρc = (0.3...1.9) · 10−29 g/cm3
.

The density due to the sum of all visible objects in the universe amounts only
to a fraction of the critical density

ρc

200
< ρvisible <

ρc

100
.

It is known, on the other hand (for example, via its gravitational action on
visible objects), that invisible matter (known as dark matter) is distributed
in the universe. The questions what kind of matter this is or which fraction
of the total matter it constitutes can at present not be answered. We do not
yet know in which fashion the universe will develop in the (distant) future.

The Big Bang scenario is popular as it combines the present knowledge
of the world of small and of large distances. Efforts to prove the correctness
of this scenario have been (and are being) undertaken. In the initial state
(however it was created) matter is supposed to be so densely packed and hot
that composite elementary particles, the hadrons, cannot exist. The original
matter consisted of a kind of ’primeval soup’, which contains only quarks
and gluons, the quark-gluon plasma. A number of experiments involving the
collision of heavy nuclei at high impact energies have been undertaken in the
hope of finding hints of the quark-gluon plasma in the reaction products. So
far the results are not fully conclusive.

When the expanding elementary matter cools down, baryons and mesons
will freeze out, leading to the most stable hadrons, the nucleons. These can,
via chains of fusion reactions, combine to form the lightest elements and
finally the distribution of elements observed at present.

The brief outline of classical physics and the world of quantum phenomena
presented here does not cover all fields of physics nor all boundary regions
of the basic diagram. For historical reasons electrodynamics (electric and
magnetic fields of stationary or moving charge distributions) and thermo-
dynamics (response of matter to changes in temperature and pressure) are
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counted as fields of classical physics. As the velocity of light plays a special
role in electrodynamics (the emphasis is on ’dynamics’ e.g. the generation
of electromagnetic waves such as light), it is understandable that the for-
mulation of the theory of relativity was initiated by questions raised in the
development of electrodynamics. In a similar fashion, attempts to interpret
some of the phenomena of thermodynamics on the basis of the motion of
atoms can be regarded as first steps towards quantum mechanics. This state-
ment applies, in particular, to the discovery of the quantum aspects of the
black body radiation.

An example for the discussion of areas beyond the boundary set by the
velocity of light is the concept of tachyons (a term which translates into ’more
than fast particles’), even if they are not as well founded on literature as the
quarks. The equations of the theory of relativity permit solutions which would
represent a new kind of particle with rather exotic properties. While all the
known particles can only have velocities that are smaller than the velocity
of light, tachyons can only exist if their velocity is larger than the velocity
of light. No specific hint for the existence of tachyons has been discovered
so far. This does not contradict the theory of relativity, as not all possible
solutions of equations, which can be formulated, need be realised in nature.



2 Kinematics

The basic questions of mechanics are:
1. What causes the motion of objects?
2. How can the motion of objects be described in mathematical terms?

The second question will be answered below, though in a somewhat pre-
liminary fashion. The third chapter will provide an answer to the first ques-
tion. Examples and more sophisticated methods for the discussion of the
motion of mechanical objects follow in the subsequent chapters.

Of all the possible forms of motion, the motion along a straight line is
the most simple. This type of motion is an ideal topic for an introduction
into the world of mechanics. It will be used to illustrate the transition from a
mathematical formulation to an idea of what actually takes place in nature.
It is also used to define and to discuss the basic kinematic concepts, that is
position, velocity and acceleration. Dynamical aspects, as the determination
of trajectories of objects once the acceleration is specified, will be indicated
but not discussed fully at this stage.

The three dimensional world is approached step by step via a discussion
of trajectories in two space dimensions. Experiments suggest that motion
in a plane can be described by a superposition of two independent one di-
mensional motions. This allows the characterisation of position, velocity and
acceleration by vectors with two components. The variety and the complexity
that can be obtained in this fashion is illustrated with selected examples.

The discussion of motion in three space dimensions (as e.g. the motion
of an object along a helix) relies on the obvious extension. Position, velocity
and acceleration are described by vectors with three components. The use
of vectors is ideally suited for formal aspects, the discussion of details de-
mands, nonetheless, the use of Cartesian or more general (as e.g. spherical)
coordinates.

2.1 One-dimensional motion

A task, which has to be faced in physics, is the transition from experimental
observation to a suitable mathematical description and, vice versa, that is the
interpretation of a set of formulae in terms of explicit details of the physical

R.M. Dreizler, C.S. Lüdde, Theoretical Mechanics, Graduate Texts in Physics,  
DOI 10.1007/978-3-642-11138-9_2, © Springer-Verlag Berlin Heidelberg 2010 
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process. This task is illustrated in the next section with three examples for
the motion in one space dimension.

2.1.1 Three examples for the motion in one space dimension

The following simple ’experiment’ can be performed without elaborate equip-
ment. An object (e.g. a small steel ball) falls under the influence of gravity
(Fig. 2.1). The position of the object is recorded as a function of time t (di-

�

�t = 0 x = 0

x > 0

Fig. 2.1. Free fall from rest

mension [T], measured e.g. in seconds [s]), using t = 0 to indicate the start
of the experiment. The position x (dimension: length [L], e.g. in centimetres
[cm]) is read off a scale, that is orientated downwards, with the origin (x = 0)
at the starting position. The result of the simple free fall experiment could
be summarised in a table, recording the distance the object has fallen as a
function of the time

t [s] 0 0.1 0.2 0.3 0.4 0.5 0.6

x [cm] 0 5 20 45 80 125 180 .

The next step is the extraction of more general information from such tables.
In the present case, it is useful to construct an x versus t diagram (Fig. 2.2a)
for this purpose. If this is done, it could be noticed, that all the points mea-
sured lie on a parabola which is described by the function

x(t) = a t2 with a = 500
cm
s2

. (2.1)

Notwithstanding the fact, that the outcome of the experiment is well known,
the following remarks should be added:

1. The transition from a set of isolated points to a formula of the kind x(t)
has to be regarded with some caution. In principle, one would need an
infinitely dense set of points, a requirement that would have stopped
progress in physics with the first experiment. It is a question of appropri-
ate judgement when the transition from a series of measurements to an
explicit formula can be made. One has to keep in mind though, that some
interesting phenomena in physics were discovered, when a measurement
was repeated with a finer distribution of points.
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2. The steel ball that was used in the fictitious experiment is an object with
a spatial extension. The expression ’position of the steel ball’ therefore
needs some comment. In the experiments just described, ’position’ could
stand for the position of the centre of gravity or the geometric centre of
the sphere. The substitution of a point for an extended object is, however,
only useful if other forms of motion of the object (as e.g. a rotation of the
object during the free fall) do not take place or are not of interest. If the
reduction of an extended, massive object to a point is appropriate, the
concept of a mass point, alternatively referred to as point particle, is
used. A mass point is an abstraction from reality. It is an object without
any spatial extension that carries a mass m (dimension [M], measured
e.g. in grams [g]).

3. The choice of the origin of a coordinate system to mark the initial position
and of the time t = 0 for the starting time of the experiment is rather
arbitrary. If one moves the initial position to the point x0 and uses the
initial time t0, then the outcome of the experiment would be summarised
as

x(t) = x0 + 500(t − t0)2

or

x(t) − x0 = 500(t − t0)2 .

The last equation and Fig. 2.2b indicate that only length and time inter-
vals matter.

(a) (b)

 150

 100

 50

 0.5 0.1

 x [cm]

 t [s]

variation of the position
with time

t

x

0t

0x

x(t) for an arbitrary
starting time t0

Fig. 2.2. The free fall experiment (x = x(t))

The conclusion to be drawn from these introductory remarks is: the mathe-
matical description of motion in one space dimension relies on the discussion
of functions x(t). Two additional examples will be used to illustrate how an
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explicit idea of the time development of the motion can be extracted from
such equations.

A well used example is the harmonic oscillator which is characterised by
the function

x(t) = A sinωt A, ω > 0 . (2.2)

A and ω are constants. The harmonic oscillator can be found in practically
all fields of physics: in mechanics, in electrodynamics or in applications of
quantum theory in nuclear and in solid state physics. The story behind this
function is best visualised if one uses an x versus ωt diagram. The angle ωt
can be measured either in degrees (a full circle corresponds to 360◦) or in
radians (a full circle equals 2π).

The sine function (2.2), represented in Fig. 2.3, describes the oscillation
of a mass point about the equilibrium position x = 0, starting at this posi-
tion at time t = 0. The mass point moves first in the direction of positive
x - values. At the time t = π/(2ω) it is found, for the first time, at the max-
imal displacement A from the origin. It returns, at time t = π/ω, to the

2 π/2π ωt

x

-A

A

Fig. 2.3. The function x(ωt) for the harmonic os-
cillator problem

equilibrium position, moves through it and reaches at time t = 3π/(2ω) its
largest negative displacement. At the time t = 2π/ω it has returned to the
origin. This pattern is repeated any number of times. For the discussion of
the harmonic oscillator the following terms are used:

1. The magnitude of the largest displacement A is the amplitude (dimension
[L]).

2. The quantity ω is the circular (or angular) frequency with the dimension
[1/T].

3. The time for one full oscillation T = 2π/ω is the period.
4. The inverse of the period is the frequency f = 1/T (dimension [1/T]).

Frequencies are measured in the units oscillations/second = s−1 ≡ Hertz.

The question, what kind of motion of a mass point is characterised by the
function
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x(t) =
g

k
t − g

k2
(1 − e−kt) , (2.3)

is perhaps not answered that quickly (any suggestions?). The constants g and
k with the dimensions

[k] = [T−1] [g] = [L/T2]

have to be specified, e stands for the well known transcendental number
(Euler’s number) e = 2.71828 . . . .

Knowledge of some properties of the exponential function e−kt is required
(representative values can be obtained e.g. with a pocket calculator) for a dis-
cussion of the formula (2.3). The exponential function is plotted in Fig. 2.4a.
It features (for positive values of kt) a sharp drop from the value 1 at kt = 0
to the value zero for large values of kt. The last statement corresponds to

lim
kt→∞

e−kt = 0

in more mathematical terms. A more precise statement on the behaviour of
the function for small values of the variable kt is given by the series expansion
of the exponential function

e−kt = 1 − kt +
1
2
k2t2 − 1

6
k3t3 + . . . (−1)n kntn

n!
+ . . .

=
∞∑

n=0

(−1)n kntn

n!
.

The series expansion of the exponential function is discussed more fully in sec-
tion 1.3.1 of the Mathematical Supplement ( Math.Chap. 1.3.1). Chapter 1 of
the supplement contains (a rather compact) summary of the analysis of functions
of one variable. Basic knowledge of differentiation and integration techniques is
assumed.

The two statements on the exponential function are sufficient for a rough
discussion of the motion described by the function (2.3). The mass point
starts at the time t = 0 at the position x(0) = 0 . For small times (more
accurately, small values of kt) the series expansion yields

x(t)
kt small−−−−→ g

k
t − g

k2
(1 − 1 + kt − 1

2
k2t2 +

1
6
k3t3 + . . .) .

Terms independent of and linear in the time variable cancel, so that the
relation

x(t) ≈ 1
2
gt2 − 1

6
(gk)t3 + . . . (kt small) (2.4)

remains. This shows that the motion is initially governed by a quadratic
function of time (as in the free fall). For larger times terms proportional to t3

and higher orders have to be taken into account. For much larger times (large
values of kt) the asymptotic behaviour of the exponential function leads to
the limiting value
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x(t) ≈ g

k
t − g

k2
(kt large) . (2.5)

On the basis of this information a sketch of the function x(t) in (2.3) can
be attempted. The expression (2.4) describes (if one considers only the first
term) a parabola. The large time limit (2.5) represents a straight line with
the slope g/k and the intercept −g/k2. The actual motion is characterised by
the parabola for small values of kt and by the straight line for large values.
For intermediate values the motion is described by a curve that interpolates
between these limits. The initial free fall motion turns into a uniform motion.

(a) (b)

1

kt

x

x(t) = e−kt

t

x(t)

x(t) =
g

k
t − g

k2
(1 − e−kt)

Fig. 2.4. The functions of the third example

The function (2.3) describes the free fall of objects (mass points) if fric-
tional effects (in a simplified approximation associated with the name of
Stokes, see Chap. 4.2.2) are taken into account. The resistance due to fric-
tion leads to a slowing down of the free fall motion. This statement can be
inferred from Fig. 2.4b. For a given interval in the variable x, the interval
in the variable t is smaller for the parabola than for the correct curve. This
shows that free fall motion, described by the parabola, is faster. The strength
of the friction is expressed by the magnitude of the constant k. This constant
depends on the medium in which the object falls (e.g. air or a more dense
medium as water) as well as on the geometric shape of the object. It should
be kept in mind though, that (2.3) only refers to the motion of the centre of
mass of the object.

Two limits for the effect of friction can be discussed directly:

• The limit k → 0 . The notation x(k, t) is more appropriate here, as the
motion is now discussed as a function of t as well as k. The limiting value

lim
k→0

x(k, t)

follows from (2.4). As each term, with the exception of the first one, con-
tains positive powers of k, which vanish in the limit, one finds

lim
k→0

x(k, t) =
1
2

gt2 .
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In words: the ideal free fall motion is recovered, if the friction is turned off.
• The limit k → ∞ . Expression (2.5) indicates that the description of the

motion deviates from the parabola sooner for larger values of k. For larger
k one finds that the slope of the straight line becomes smaller and smaller.
The motion becomes slower and slower with increasing k, so that

lim
k→∞

x(k, t) = 0

is obtained in the limit k → ∞ . In words: the object does not move at all.
It stays forever at the starting point. The limit k → ∞ corresponds to an
infinitely viscous medium.

The discussion of the three examples for the description of motion in one
spatial dimension dealt only with the transcription of the mathematical for-
mulation into a more direct picture of the actual process, demonstrating that
a good deal of information can be found in simple formulae. Dynamical as-
pects, as a discussion of the question what causes the motion of objects, will
be outlined in Chap. 3.1. The examples are now used for an introduction of
the basic concepts of kinematics, that is velocity and acceleration.

2.1.2 Velocity

The definition of velocity is fashioned after the measuring process (Fig. 2.5a).
The position of a mass point at time t1 is measured as x(t1) and as x(t2) at
the later time t2 . The quotient

(a) (b)

 2 x(t  )

 1 x(t  )

 2 t 1 t

 x

 t

measuring procedure

Δx

Δt

2t1t t

x(t)x

representation in a x - t diagram

Fig. 2.5. The definition of the average velocity

x(t2) − x(t1)
t2 − t1

= v̄(t1, t2)

represents the average velocity (mean velocity) in the time interval [t1, t2].
The illustration of this equation in the x - t diagram (Fig. 2.5b) shows: the
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average velocity represents the slope (more precisely the tangent of the angle
of the slope) of the secant through the points (t1, x1) and (t2, x2)

v̄ =
Δx

Δt
= tan(αsec) .

The average velocity does not characterise the motion in a sufficient manner.
Every curve x(t) through the two points has the same v̄ in the interval [t1, t2] .

For a more detailed picture one needs the concept of the instantaneous
velocity, which corresponds to the first derivative of the function x(t)

v(t) = lim
Δt→0

[
x(t + Δt) − x(t)

Δt

]
. (2.6)

Alternatively one writes

v(t) =
dx(t)

dt
= ẋ(t) = x′(t) .

The instantaneous velocity is in general also a function of time, it changes
from point to point. This quantity can be interpreted in a simple manner in
the x - t diagram: The slope of the secant turns into the slope of the tangent
line at the point (t, x) (Fig. 2.6).

Δx

Δt

tΔt+t t

x(t)x

Δt → 0

t t

x(t)x

Fig. 2.6. Definition of the instantaneous velocity

The definition indicates, that the instantaneous velocity can not be mea-
sured directly. It may be approximated with ever increasing precision, if ar-
bitrarily small time intervals and distances can be measured. The naive limit
is, however, always the indefinite expression

vexp(Δt → 0) −→ 0
0

.

The instantaneous velocities for the three examples are easily calculated.

• Free fall (in a more general formulation)

x(t) =
1
2
gt2 v(t) = gt .
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• Harmonic oscillator

x(t) = A sinωt v(t) = Aω cosωt .

• Free fall with friction

x(t) =
g

k
t − g

k2
(1 − e−kt)

v(t) =
g

k
− g

k2
(−(−k)e−kt) =

g

k
(1 − e−kt) .

In addition to the characterisation of the motion, which can be gained
from a discussion of the position x(t), further information can be obtained
by a discussion of v(t).

• There is not much to say for the free fall. The velocity increases linearly
with time.

• For the case of the harmonic oscillator, it is useful to compare the two
functions x(t) and v(t) (Fig. 2.7). The velocity is zero at the turning point

(a) (b)

ω t

x(t)
A

position

ω t

v(t)
Aω

velocity

Fig. 2.7. The functions x(t) and v(t) for the harmonic oscillator problem

of the mass. It has a maximum if the object passes through the equilibrium
points. The significance of the sign of v can also be recognised. A positive
velocity describes (referring to the figure) an upward motion, a negative
velocity a downward motion.

• The velocity for the free fall with friction is best discussed in the same
fashion as the function x(t) with the aid of the limiting situations. If kt
is sufficiently small, so that the series for the exponential function can be
restricted to quadratic terms, one finds

v(t) =
g

k

(
1 − 1 + kt − 1

2
k2t2 + . . .

)
= gt − 1

2
gkt2 + . . . .

If kt is sufficiently large, the result is
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v(t) → g

k
.

The velocity increases at first linearly with time, then grows more slowly.
For large times a constant final velocity is obtained as a consequence of
friction. The final value of the velocity is smaller for a larger frictional
constant k (Fig. 2.8).

g/k

g t

t

v(t)

Fig. 2.8. The function v(t) for the free fall
with friction

2.1.3 Acceleration

The (instantaneous) velocity is a direct measure of the change of the position
with time. The acceleration is a measure of the change of the velocity with
time. The corresponding definitions are:
average (mean) acceleration in the interval [t1, t2]

ā(t1, t2) =
v(t2) − v(t1)

t2 − t1
,

instantaneous acceleration at time t

a(t) = lim
Δt→0

v(t + Δt) − v(t)
Δt

=
dv

dt
= v̇(t) . (2.7)

The instantaneous acceleration is obtained by differentiation of the function
v(t), so that there is nothing more to be said from a technical point of view.
The derivative of the first derivative is the second derivative with the usual
notation

a(t) =
d2x

dt2
= ẍ(t) .

The instantaneous acceleration for the three examples can easily be calcu-
lated:

• Free fall: a(t) = g . Near the surface of the earth the acceleration due to
gravity is constant. The value
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g = 981 cm/s2 = 9.81m/s2

will be derived in Chap. 3.2.4.1 from the general law of gravitation. The ac-
tual value found in a local experiment depends, however, on the geograph-
ical latitude, the altitude above sea level and the geological environment.

• The acceleration for the harmonic oscillator a(t) = −Aω2 sinωt is once
again described by a sine curve, but with a negative sign (Fig. 2.9). This

2 π/2π ωt

a(t)

2ω-A

2ωA

Fig. 2.9. The acceleration a(t) for the harmonic oscil-
lator problem

means that the acceleration is directed against the motion in the first quar-
ter cycle, in the second quarter it produces the return to the equilibrium
position, etc. The equation for the acceleration of the harmonic oscillator
can also be written in the form

a(t) = −ω2x(t) .

This indicates that the acceleration is at all times proportional but opposite
to the instantaneous displacement. This statement is the characteristic
feature of the harmonic oscillator. The last equation can be written in the
form

ẍ(t) =
d2x(t)

dt2
= −ω2x(t) . (2.8)

This example illustrates for the first time the mathematical problem that
has to be addressed in Theoretical Mechanics. The relation (2.8) repre-
sents a differential equation, that is an equation for the determination
of the function x(t) which involves derivatives. The right hand side, the
acceleration, has a simple form in this example. According to the standard
classification, the differential equation of the harmonic oscillator problem
is a homogeneous, linear differential equation of second order with constant
coefficients.

Differential equations are an ever present feature of theoretical physics. A first
overview and methods of solution for the simplest ordinary differential equations
are presented in Math.Chap. 2. The discussion of differential equations is
continued in Math.Chap. 6.
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• For the last example one finds

a(t) = ge−kt .

The acceleration starts at the value g for t = 0, but drops (quickly) to the
value zero because of friction (Fig. 2.10). In the same fashion as the accel-
eration approaches the value zero, the velocity becomes constant. Further

g

t

a(t)

Fig. 2.10. The function a(t) for the free fall
with friction

insight is gained by rewriting the result for the acceleration in a simple
fashion

a(t) = g + ge−kt − g

= g + k
g

k
(e−kt − 1)

= g − kv(t) . (2.9)

The interpretation of this rearrangement is: the acceleration is composed
of two parts. The first part corresponds to a free fall motion. The second
term is the contribution due to friction. The law of Stokes, which states that
friction is directly proportional to the velocity, can be recognised here. The
negative sign signifies that friction acts against the instantaneous direction
of motion1.

There remains the question, whether it is necessary to consider higher order
derivatives as e.g. the change of acceleration with time

da

dt
=

d2v

dt2
=

d3x

dt3
?

The answer to this question is given by Newton’s second axiom of mechanics.
It implies that a consideration of higher order derivatives is not necessary.
This point will be discussed in Chap. 3.

Three (simple) examples for the description of the motion of a mass point
have been presented in the present section. Starting with a discussion of the

1 Alternative forms for the description of frictional effects can be found in the
literature.
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time change of the position, further characterisation of the motion calls for
the calculation and analysis of

the instantaneous velocity v(t) = dx(t)/dt

and the instantaneous acceleration a(t) = dv(t)/dt .

It should be kept in mind though, that the problem which has to be faced
eventually, is exactly the reverse

Start with a specification of the acceleration a. Use this speci-
fication to calculate the velocity v(t) and the position x(t) as
functions of time.

Given : a −→ Calculate : v(t), x(t) .

2.1.4 First remarks concerning dynamical aspects

The solution of the problem just indicated is usually more difficult than
the application of the rules of differentiation, which are sufficient for the
calculation of v(t) and a(t) if x(t) is given. For the determination of x(t) and
v(t), given the acceleration a, several options, which will be addressed briefly
at this stage, can be distinguished.

In the simplest case, a is given as a function of time only: a = a(t).
For the calculation of v(t) and x(t) integration (as the inverse operation to
differentiation) is required

dv

dt
= a(t) −→ v(t) =

∫ t

t0

a(t′) dt′ + v(t0)

dx

dt
= v(t) −→ x(t) =

∫ t

t0

v(t′) dt′ + x(t0) .

The second entry in each line is the inverse of the first. The first term on
the right hand side is a definite integral from the initial time t0 to the final
time t. In addition to the integrals two integration constants v(t0) and x(t0)
appear. As the integrals vanish for t = t0 , the fact that the starting velocity
and the starting position can be specified, has to be taken care of. A free
fall experiment could, for instance, begin at any height with an additional
velocity in the x - direction (see Math.Chap. 2.1 for statements on initial
value problems).

For the free fall with a(t) = g the velocity is found to be

v(t) =

t∫
t0

g dt′ + v(t0) = g (t − t0) + v(t0) .
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The first term corresponds to the rectangle under the curve a(t) = g between
the points t0 and t (Fig. 2.11a). The result for the position is

x(t) =

t∫
t0

(g (t′ − t0) + v(t0)) dt′ + x(t0)

=
(

1
2
g (t − t0)2 + v(t0)(t − t0)

)
+ x(t0) .

The term in the large brackets represents the area under the curve v(t), which
is composed (Fig. 2.11b) of a rectangle with the sides v(t0) and (t − t0) and
a right angle triangle with the legs g (t − t0) and (t − t0) .

(a) (b)

t0t 

 g

 t’

 a(t’)

calculation of v(t) from a(t)

0v(t )

t0t 

0g(t-t )

 v(t)

t’

v(t’)

calculation of x(t) from v(t)

Fig. 2.11. Integration of the equation of motion for the free fall

The second case, the acceleration is given as a function of position,
a = a(x), is quite common in applications. The harmonic oscillator problem
with

a(x) = −ω2x

is a relevant, but simple example. Compared with the previous case, deter-
mination of x(t) and v(t) is slightly more involved as direct integration is not
possible. The differential equation for the unknown function x(t) reads

d2x

dt2
= −ω2x or ẍ = −ω2x

for the harmonic oscillator and
d2x

dt2
= a(x) or ẍ = a(x)

in more general situations. The question, that is posed by the differential
equation for the harmonic oscillator, can be formulated as: for which func-
tion is the second derivative, up to a negative factor, identical with the func-
tion itself? The solution (already known) of this differential equation can
be obtained with standard techniques (methods for the solution of differential
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equations of this type are outlined in Math.Chap. 6.1). One should, however,
be aware of the fact that the solutions of the related differential equation

ẍ = +ω2x

(with a positive instead of a negative constant) are exponential and not
trigonometric functions.

In the last case, which can again be handled in a simple way, the accel-
eration is given as a function of velocity alone: a = a(v) . The free fall with
friction with a = g− kv is a possible example. The corresponding differential
equation is best written in the form

dv

dt
= g − kv

or in the general case as

dv

dt
= a(v) .

This type of differential equation can be solved by direct integration∫ v

v0

dv′

a(v′)
=
∫ t

t0

dt′ .

Technical details are found in Math.Chap. 2.2.1.
The three types of differential equations presented are special cases of

differential equations which characterise the motion in one space dimension.
In the general case, the acceleration is specified as a function of time, as well
as position and velocity a = a(v, x, t). The differential equation

d2x

dt2
= a

(dx

dt
, x, t

)
is an explicit differential equation of second order. The solution of this type
of differential equation demands reasonable mathematical skills.

A selection of classes of differential equations, which can be solved analytically, is
presented in Math.Chap. 2 and in Math.Chap. 6. Math.Chap. 6.4 contains
an outline of numerical methods which have to be used in many instances.

2.2 Problems of motion in two or three dimensions

A free fall experiment can also serve as an introduction to the discussion of
motion in more than one space dimension: an object (mass point) does not
start from rest, but is given an initial velocity in the horizontal direction. The
motion of this object is observed and compared with the motion of a second
object, which starts at the same time and height with zero initial velocity.

A comparison of the motion of the two objects shows (Fig. 2.12a), that
they are always at the same height. This observation is independent of the
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value of the initial horizontal velocity of the first object. The conclusion,
that can be extracted from this observation, is: the motion in the horizontal
direction is independent of the motion in the vertical. Motion in two dimen-
sions can be discussed by a combination of two independent one-dimensional
components. The free fall experiment in two dimensions is characterised by a
uniformly accelerated motion in the vertical and a uniform motion in the hor-
izontal direction. Denoting the horizontal by y and the vertical (downwards
as before) by x, it follows that

x(t) =
1
2
gt2 vx(t) = gt ax(t) = g ,

y(t) = vy0t vy(t) = vy0 ay(t) = 0 .

Each of the kinematic quantities (position, velocity, acceleration) is charac-
terised by a pair of equations. If an orthogonal coordinate system with an
arbitrary orientation of the x -, y - and z - directions is chosen, the position of
the object (as a function of time) would have to be described by projection

(a) (b)

 0y 0 v  = v 0 v  = 0

 3 t

 2 t
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 0 t

 x

 y

optimal coordinate system
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coordinate system with arbitrary orientation

Fig. 2.12. Free projectile motion

onto three coordinate axes. In the three-dimensional world a triple of func-
tions is needed for the characterisation of each of the kinematic quantities

position : (x(t), y(t), z(t)) (2.10)

velocity :
(

vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt

)
(2.11)

acceleration :
(

ax =
dvx

dt
, ay =

dvy

dt
, az =

dvz

dt

)
. (2.12)

The triples can be handled most efficiently with the concept of vectors. Be-
fore introducing vector notation it is, however, useful to sample the possibili-
ties that can be generated by a superposition of two one-dimensional motions.
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Vector calculus is summarised in Math.Chap. 3, which also contains an
overview of additional topics of ’Linear Algebra’, as matrices, determinants and
linear coordinate transformations, as well as some remarks on linear vector spaces
and nonorthogonal coordinate systems.

2.2.1 Two-dimensional motion

For the free fall experiment in two dimensions a set of equations of the form
{x(t), y(t)} is used to characterise the position. This is called a parametric
representation of the trajectory of the object. The time development of
the motion can be followed explicitly (Fig. 2.13), if the points {x(t), y(t)}
are entered in an x - y diagram.

y

x

4t 

3t 

2t 

1t 

Fig. 2.13. Parametric representation of a tra-
jectory (two-dimensional)

The equation of the trajectory itself is obtained by elimination of the
time variable from the set of equations

x = x(t) y = y(t) .

For the simple projectile motion this equation

x =
g

2v2
y0

y2 or y = ±
√(

2v2
y0x

g

)

is the equation of a parabola, or more precisely, the equation of two branches
of a parabola. The equation for the trajectory itself does not contain any
information on the time development of the motion.

A large variety of trajectories can be generated by a superposition of
harmonic oscillations in two orthogonal directions. These curves are named
Lissajous figures after the French physicist Jules Lissajous.

2.2.1.1 Superposition of harmonic oscillations. The oscillations in the
direction of the x - and the y - coordinates have in general different amplitudes
(A), phases (φ) and (angular) frequencies (ω)
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x(t) = Ax sin(ωxt + φx) (2.13)
y(t) = Ay sin(ωyt + φy) . (2.14)

The amplitudes and the phases express the initial positions, e.g. for t = 0

x(0) = Ax sinφx vx(0) = ωxAx cosφx

y(0) = Ay sinφy vy(0) = ωyAy cosφy ,

the frequencies control the speed of the individual oscillations. It can be
demonstrated that only the difference of the phases is relevant, if the co-
ordinate system is chosen appropriately. For this reason one of the phases
can, without loss of generality, be set equal to zero. The choice φy = 0 yields
y(0) = 0. The initial position of the oscillating mass point is on the x - axis for
this choice of the coordinate system. For simplicity one then writes φx ≡ φ.

The two frequencies are supposed to be equal in the first explicit example:
ωx = ωy = ω. In order to derive the equation of the trajectory one resolves
(2.14) in the form sinωt = y(t)/Ay and finds

cosωt =

⎧⎪⎪⎨
⎪⎪⎩

+
1

Ay

√
A2

y − y(t)2 for −π

2
≤ ωt ≤ π

2
mod(2π)

− 1
Ay

√
A2

y − y(t)2 for +
π

2
≤ ωt ≤ 3π

2
mod(2π) .

(2.15)

The equation for the motion in the x - direction (2.13) can, with the aid of
the sum formula of the trigonometric functions, be written as

x(t) = Ax(cosφ sinωt + sinφ cosωt) ,

so that the expressions for sinωt and cosωt lead to the relation

x =
Ax

Ay

(
y cosφ ± sinφ

√
A2

y − y2
)

. (2.16)

A general discussion of this equation for the trajectory is possible, but the
possibilities are best sampled by looking at some special cases.

Case 1: The two individual oscillations are in phase for φ = 0

x(t) = Ax sinωt y(t) = Ay sinωt .

The equation for the trajectory, y = (Ay/Ax)x , represents a straight line,
due to the restricted range of values of the trigonometric functions actu-
ally only a section of a straight line (Fig. 2.14a). The superposition of
the two linear oscillations yields, in this case, a linear oscillation with the
same frequency ω. The mass point oscillates in a direction that is given by
tanα = (Ay/Ax) , the maximal displacement from the origin of the coordi-
nate system is [A2

x + A2
y]1/2 .

Case 2: The parametric representation of the trajectory for the phase differ-
ence φ = ±π is
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x(t) = −Ax sinωt y(t) = Ay sinωt ,

the equation of the trajectory y = −(Ay/Ax)x. The result is once more a
linear harmonic oscillation, this time along a section of a straight line in the
second and fourth quadrant (Fig. 2.14b).

(a) (b)

α

y

x

x     y(A  ,A )

phase difference 0

α

y

x

phase difference ±π

Fig. 2.14. Trajectories of the two-dimensional harmonic oscillator with
ωx = ωy, Ax = Ay

Case 3: The equation of the trajectory, which follows from

x(t) = A cosωt y(t) = A sinωt

for the case of equal amplitudes (Ax = Ay = A) and a phase difference of
φ = π/2 , is the equation of a circle with radius A

x = ±
√

A2 − y2 or x2 + y2 = A2 .

The parametric representation contains the information that the mass point
begins at position (x(0), y(0) ) = (A, 0) at time t = 0 and moves anticlock-
wise on the circle. The position is (x(π/2ω), y(π/2ω) ) = (0, A) at the time
ωt = π/2. The motion is uniform (Fig. 2.15a), a full revolution is completed
in the time T = 2π/ω .

(a) (b)

y

x
0 = 

 /2πt = ω

phase difference +π/2

y

x
0t =ω

phase difference −π/2

Fig. 2.15. Trajectories of the two-dimensional harmonic oscillator with
ωx = ωy, Ax = Ay

tω
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Case 4: The amplitudes are still equal but the phase difference is φ = −(π/2) .
The x - coordinate changes its sign to x(t) = −A cosωt in this case. The
trajectory is still a circle given by x2 + y2 = A2, only the mass point starts
this time at the position (x(0), y(0) ) = (−A, 0) and traverses the circle
uniformly in a clockwise direction (Fig. 2.15b).

Case 5: The parametric representation is

x(t) = Ax cosωt y(t) = Ay sinωt

for the phase difference φ = π/2 and different amplitudes (Ax �= Ay), so that
the equation of the trajectory is

x = ±Ax

Ay

√
A2

y − y2 or
x2

A2
x

+
y2

A2
y

= 1 .

This trajectory is an ellipse (Fig. 2.16a), which is traversed in the same sense
as the corresponding circle starting at the position (Ax, 0). The time for a
complete revolution is still T = (2π)/ω .

Elimination of the square root in (2.16) yields a more general equation
for the trajectory in the case of equal frequencies

A2
y x2 − 2AxAyxy cosφ + A2

x y2 = A2
xA2

y(sinφ)2 . (2.17)

It is not difficult ( D.tail 2.1) to establish the fact that the trajectories
for ωx = ωy are in general ellipses, though they are not necessarily oriented
along the coordinate axes. Ellipses are also found if the amplitudes are equal
Ax = Ay, but the phase difference φ has no special value (Fig. 2.16b). The
circles and the sections of straight lines can be considered as limiting cases
of the family of ellipses.

(a) (b)

y

x
0t =ω

 /2 πt =  ω

Ax �= Ay,
phase difference = π/2

π /6

π /4

y

x

0t =ω

Ax = Ay,
phase differences π/4 and π/6

Fig. 2.16. Trajectories of the two-dimensional harmonic oscillator with ωx = ωy

The trajectories become definitely more complex, if the two frequencies
are different (ωx �= ωy). A complete proof of this statement involves a rather
lengthy discussion, which is abbreviated by two examples.
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In the first example the phase difference is φ = π/2 , the amplitudes are equal
in magnitude (Ax = Ay = A), but the frequency of the oscillation in the x -
direction is twice as large as the frequency in the y - direction

ωx = 2ω, ωy = ω .

Elimination of the time from the parametric representation

x(t) = A sin(2ωt + π/2) = A cos 2ωt

= A(cos2 ωt − sin2 ωt)
y(t) = A sinωt

relies once more on the relation (2.15)

sinωt =
y

A
cosωt = ±

√
1 − y2

A2
.

Insertion into the representation of the x - coordinate yields

x = A

(
1 − y2

A2
− y2

A2

)
=

1
A

(A2 − 2y2)

or after sorting

y = ±
√

A

2
(A − x) .

This equation represents a parabola (actually, a section of a parabola, which
is located within a square of side 2A). The curve passes through the points

(−A, ±A) , (0, ±A/
√

2) and (A, 0) .

The mass point starts, at t = 0, at the intersection of the parabola and the x -
axis (Fig. 2.17a), moves along the upper branch to the point with x = −A,
reverses its motion and reaches, after traversing the x - axis, the point with
x = −A on the lower branch. There it reverses its motion once more and,
after crossing the x - axis again, begins the next cycle.

The next example is characterised by the statement

(φ = 0) Ax = Ay = A ωx = ω, ωy = 2ω .

The frequency of the oscillation in the y - direction is twice as large as that
of the x - direction. The parametric representation

x(t) = A sinωt

y(t) = A sin 2ωt = 2A sinωt cosωt

leads in this case to the equation of the trajectory

y = ±2x
A

√
A2 − x2 .

The trajectory is a kind of figure ’8’ in a square with sides 2A around the
origin. The mass point traverses, starting at the origin, first the right hand
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(a) (b)
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Fig. 2.17. Trajectories of the two-dimensional harmonic oscillator for
Ax = Ay = A but different frequencies

loop in a clockwise fashion and then the left hand loop counterclockwise. The
positive branch of the equation of the trajectory describes the section above
the x - axis, the negative branch the lower section (Fig. 2.17b). The variation
of the trajectory with the phase difference is shown in Fig. 2.18. It should be
noted that the same figure is obtained for φ = 0 and for φ = π/2 , however
the sense of the motion is reversed.

Another selection of possible trajectories is displayed in Figs 2.19 - 2.22.
Ellipses with the limiting cases of circles and straight lines are found if the
ratio of the frequencies (ωx/ωy) is 1 (see more detailed discussion above).
The variation of these curves with the phase difference can be observed in
Fig. 2.19. Again the reversal of the sense of motion for figures of the same
shape and a different phase (e.g. φ = 1200 and 2400) can be noted.

Closed figures are always obtained for a rational ratio of the frequencies
ωx

ωy
=

m

n
(m,n integer) .

φ = 450 φ = 600 φ = 900 φ = 1200 φ = 1350

Fig. 2.18. Superposition of oscillations with 2ωx = ωy, Ax = Ay . Variation of the
phase difference φ

The number of loops in the figures increases with the magnitude of the inte-
gers m and n. Examples are presented in Figs 2.20 - 2.22. The trajectories do
not close if the ratio of frequencies is irrational. The mass or oscillator point
will, after some time, have covered each point of the rectangle with sides 2Ax

and 2Ay.
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φ = 900 φ = 1200 φ = 1500 φ = 1800 φ = 2100

φ = 2400 φ = 2700 φ = 3000 φ = 3300 φ = 3600

Fig. 2.19. Variation of the trajectories with Ax = Ay and ωx = ωy with the phase
difference φ

φ = 450 φ = 600 φ = 900 φ = 1200 φ = 1800

Fig. 2.20. Variation of the trajectories with the phase difference φ for the rational
ratio 2ωx = 3ωy , (Ax = Ay)

φ = 450 φ = 600 φ = 900 φ = 1200 φ = 1350

Fig. 2.21. Variation of the trajectories with the phase difference φ for the rational
ratio 3ωx = 4ωy , (Ax = Ay)

φ = 450 φ = 600 φ = 900 φ = 1200 φ = 1350

Fig. 2.22. Variation of the trajectories for 3ωx = 4ωy, 2Ax = Ay with the phase
difference φ
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The first experimental demonstration of the superposition of two linear os-
cillations by J. Lissajous in 1855 relied on a mechanical device. More modern
experimental reproductions of the figures can be obtained with an oscillo-
scope, which uses alternating voltages at two deflection plates arranged at
right angles. As the smallest deviation from a rational ratio of the frequencies
yields curves that do not close, an oscilloscope could be used for an extremely
accurate, electro-technical comparison of frequencies2.

2.2.2 Motion in three spatial dimensions

The set of equations {x(t), y(t), z(t)} represents a curve embedded in three-
dimensional space. An example is the parametric representation of a helix

x(t) = R cosωt y(t) = R sinωt z(t) = bt . (2.18)

Here R and b are fixed parameters and t is the variable (e.g. with 0 ≤ t ≤ ∞)
which is used to trace the space curve. The projection of the helix onto the
x - y plane is a circle, which is traversed uniformly. The z - component changes
linearly with t by the amount Δz = 2πb/ω during the interval of time needed
to traverse the circle once. The quantity Δz is called the pitch of the helix
(Fig. 2.23).

Δ z

z

yx
Fig. 2.23. A helix

A second example is characterised by the set of equations

x(t) = a cosφ sinωt y(t) = b sinφ sinωt z(t) = c cosωt (2.19)

which depend on four parameters a, b, c and φ and the variable t. The equa-
tions describe the motion of a mass point on the surface of an ellipsoid which
is oriented along the coordinate axes. Figure 2.24a shows the space curve,
which runs along a ’longitudinal line’ of the ellipsoid through the north and
the south poles. For a proof of this statement one needs to eliminate the
2 Probl. 2.8 offers the possibility to investigate computer-generated Lissajous

figures.
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parameter t (the time) from the parametric representation. This results in
two implicit equations in three variables

x2

a2
+

y2

b2
+

z2

c2
= 1 y =

(
b

a
tanφ

)
x .

The first equation represents the surface of an ellipsoid with the semiaxes
a, b, c. The second equation describes, in three-dimensional space, a plane
through the z - axis, which is generated by a parallel displacement of the
straight line (y = Ax) in the x - y plane in the direction of the z - axis.
The trajectory corresponds to the intersection of the ellipsoid with the plane
(Fig. 2.24b).

Fig. 2.24. Motion on an ellipsoid of revolution

The representation of curves in space by the intersection of two surfaces
is an alternative to the parametric representation via three functions of one
variable t. The parametric representation is the preferred tool in theoretical
mechanics.

The representation of surfaces in space with the aid of functions of several vari-
ables is explained in Math.Chap. 4. This chapter also explains concepts as e.g.
partial derivatives and integrals of functions of several variables.

The components of the velocity and the acceleration vectors can be cal-
culated by direct differentiation of a given set of coordinates for the position.
The motion on the space curve (2.19) can be further characterised by the
components of velocity and the acceleration. The results are more compact
if the abbreviations

Ax = a cosφ Ay = b sinφ Az = c

and

x = Ax sinωt y = Ay sinωt z = Az cosωt

are used. They are

vx =
dx

dt
= ωAx cosωt vy =

dy

dt
= ωAy cosωt

vz =
dz

dt
= −ωAz sinωt
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for the components of velocity and

ax =
dvx

dt
= −ω2Ax sinωt ay =

dvy

dt
= −ω2Ay sinωt

az =
dvz

dt
= −ω2Az cosωt

for the components of acceleration. The result shows that this example is
another variant of the harmonic oscillator problem (in three dimensions) as

ax = −ω2x ay = −ω2y az = −ω2z .

The actual problem that has to be faced, is – exactly as in the case of one-
dimensional motion – more difficult. The task is normally not the calculation
of the velocity and the acceleration after the specification of the trajectory,
but rather:

Calculate the position (vector) x(t), y(t), z(t)
(as well as the velocity (vector) vx(t), vy(t), vz(t) ),

given the acceleration (vector) ax, ay, az and the initial conditions
x(t0), y(t0), z(t0), vx(t0), vy(t0), vz(t0).

The task is to find the solution of a set of differential equations. This task is
relatively simple for the case of three uncoupled differential equations

ẍ = ax(t, x, ẋ) ÿ = ay(t, y, ẏ) z̈ = az(t, z, ż) , (2.20)

each of the kind that was discussed in Chap. 2.1. In general, a set of three
coupled differential equations of the form

ẍ = ax(t, x, y, z, ẋ, ẏ, ż) (2.21)
ÿ = ay(t, x, y, z, ẋ, ẏ, ż)
z̈ = az(t, x, y, z, ẋ, ẏ, ż)

has to be addressed. Examples and appropriate methods for their solution
will be discussed in later chapters.

2.2.3 An example for the determination of trajectories in two
space dimensions

The differential equations

ax = g − kvx ay = −kvy (2.22)

can be used to demonstrate the solution of a set of uncoupled equations
of motion in two space dimensions. The acceleration consists of a constant
term representing gravity and a frictional contribution in the x - direction
(vertical, directed downwards), in the y - direction (horizontal, orientation to
the right) there is only friction. The solution describes projectile motion in a
homogeneous, viscous medium. The initial conditions
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t0 = 0 : x(0) = y(0) = 0 vx(0) = vx0 vy(0) = vy0

state that the mass point starts at the origin with an arbitrary initial velocity.
The method that is used to solve the equations at hand is the method of

separation of variables, which has already been used in Chap. 2.2.1 (compare
also Chap. 2.1). The differential equation for the velocity component in the
x - direction

dvx

dt
= g − kvx

is a differential equation of first order. Separation of variables incorporating
the initial condition∫ t

0

dt =
∫ vx

vx0

dv′x
(g − kv′x)

yields for the velocity

vx(t) = ẋ(t) =
g

k
(1 − e−kt) + vx0e−kt .

This result represents a differential equation for the x - coordinate. The so-
lution can be obtained by direct integration

x(t) =
g

k
t +

g

k2
(e−kt − 1) − vx0

k
(e−kt − 1) . (2.23)

The differential equation for the motion in the y - direction is simpler

dvy

dt
= −k vy .

As this equation differs from the equation for the x - component only by the
fact that g = 0, the solution can be written down directly

vy(t) = vy0e−kt y(t) = −vy0

k
(e−kt − 1) . (2.24)

The discussion of the details of the motion relies in this example also on
a consideration of the two limiting situations. The series expansion for small
values of kt

(e−kt − 1) = −kt +
1
2
k2t2 − . . .

leads to the approximation

x(t) ≈ vx0t +
1
2
(g − vx0k)t2 + . . .

y(t) ≈ vy0t − 1
2
vy0kt2 + . . . .

The trajectory is close to a parabola if frictional effects are small, that is if
vx0k ∼ vy0k 
 g. The time dependence of the coordinates for large values of
kt is obtained with the asymptotic behaviour of the exponential function as

x(t) −→ g

k
t +

(vx0

k
− g

k2

)
and y(t) −→ vy0

k
. (2.25)
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y

x

y

yov    / k

Fig. 2.25. Projectile motion in a viscous medium

The motion is uniform along the vertical axis. The complete trajectory is
illustrated in Figure 2.25.
It is also possible to derive an analytical expression for the trajectory. The
second equation in (2.24)

(e−kt − 1) = − ky

vy0

can be resolved in the form

t = −1
k

ln
(

1 − ky

vy0

)
.

Insertion into (2.23) then leads to the equation for the trajectory

x = − g

k2
ln
(

1 − ky

vy0

)
+
(

vx0

vy0
− g

kvy0

)
y .

The Lissajous problem of Chap. 2.2.1 with the differential equations

ẍ = −ω2
xx and ÿ = −ω2

yy

and the general solution

x(t) = Ax sin(ωxt + φx) vx(t) = Axωx cos(ωxt + φx)
y(t) = Ay sin(ωyt + φy) vy(t) = Ayωy cos(ωyt + φy)

is a second example for a system of simple differential equations of the type
(2.20).

2.3 Vectorial formulation of problems of motion

The motion of a mass point in space is characterised by a set of three functions
{x(t), y(t), z(t)} , the parametric representation of the trajectory. The three
functions can be interpreted as components of a (time dependent) vector

r(t) = x(t)ex + y(t)ey + z(t)ez . (2.26)
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The endpoint of the vector r(t) maps out the trajectory (Fig. 2.26a) in this
vectorial description of the time development. It has the advantage that the
description of the motion is independent of the choice of a particular coordi-
nate system, even though it may be necessary to resort to a decomposition
into components in order to handle details (Fig. 2.26b).

(a) (b)

r(t)

z

y

x
vectorial description of
a space curve

x
y

x’ 
r(t)

z’ 
y’ z

independence of the choice
of the coordinate system

Fig. 2.26. Vectorial description of the motion of a mass point

2.3.1 Basic concepts

The discussion of the velocity vector without recourse to a decomposition
into components could proceed as follows. The two vectors, which mark the
position at times t and t+Δt , allow the construction of the difference vector
Δr = (r(t + Δt) − r(t)) (see Fig. 2.27). This vector, if multiplied with the

Δ t)r(t + 

r(t)
rΔ

Fig. 2.27. Definition of the velocity vector

scalar (1/Δt), is the vector for the average velocity

v̄(t,Δt) =
Δr

Δt
.

It goes over into the vector for the instantaneous velocity in the limit Δt → 0

v(t) =
dr

dt
= ṙ = lim

Δt→0

(r(t + Δt) − r(t))
Δt

. (2.27)

The first three entries on the left hand side indicate variations in notation,
the right hand side is the definition of the actual limiting value. The vector
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v(t) corresponds, geometrically speaking, to a vector in the direction of the
tangent line of the space curve in the point r(t).

The transition from the vectorial formulation to the decomposition into
components uses the steps: Refer the two vectors r(t) and r(t + Δt) to a
coordinate system that does not change in time

v̄(t,Δt) =
Δx

Δt
ex +

Δy

Δt
ey +

Δz

Δt
ez

and obtain in the limit Δt → 0

v(t) = ẋ(t)ex + ẏ(t)ey + ż(t)ez . (2.28)

The prerequisite of a coordinate system, which does not change in time, is
essential at this point. The discussion is quite different if this is not the case
(see e.g. Chap. 6.2 for a treatment of rotating coordinate systems).

The acceleration vector is defined correspondingly as the time change
of the velocity vector

a(t) =
dv

dt
=

d2r

dt2
= v̇(t) = r̈(t) = lim

Δt→0

(v(t + Δt) − v(t))
Δt

. (2.29)

Again, the actual definition is the limiting value, the remaining entries are
variants of notation. The decomposition of this vector with respect to a co-
ordinate system, that does not change with time, is

a(t) = ẍ(t)ex + ÿ(t)ey + z̈(t)ez . (2.30)

The differentiation and the integration of vectors with respect to a parameter
(in physics usually the time) will be used from now on. A detailed discussion of
relevant mathematical aspects can be found in Math.Chap. 5.

2.3.1.1 Length of arc, tangent vector and normal vector. A number
of quantities that characterise particular aspects of trajectories in space can
be deduced from the velocity vector.

• The length of a segment of a trajectory with the endpoints at t0 and t , the
length of arc or for short the arc length, is given by

s(t, t0) =
∫ t

t0

[
ẋ(t′)2 + ẏ(t′)2 + ż(t′)2

]1/2
dt′

=
∫ t

t0

[ṙ(t′) · ṙ(t′)]1/2 dt′ .

This definition is based on the division of the arc into infinitesimal elements
of length

ds =
[
dx2 + dy2 + dz2

]1/2
,

followed by the introduction of a parameter which traces the curve

dx = ẋ(t)dt dy = ẏ(t)dt dz = ż(t)dt

and finally integration over the complete segment.
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• The tangent vector eT at a point of the trajectory is a unit vector which
points in the direction of the tangent line of the curve

eT (t) =
dr

ds
=

dr

dt

dt

ds
=

ṙ(t)
|ṙ(t)| .

The second entry in this equation constitutes the actual definition. The
next entry follows from the chain rule, while the last one uses the definition
of the length of arc

ds

dt
= [ṙ(t) · ṙ(t)]1/2 = |ṙ(t)| .

The tangent vector is a unit vector. This can be seen by looking at the
scalar product

eT · eT =
ṙ(t) · ṙ(t)
|ṙ(t)|2 = 1 .

• The normal vector, which is defined by

eN (t) = ρ(t)
deT (t)

ds
,

is a unit vector perpendicular to eT . As the derivative of the tangent vector
with respect to the arc length is not necessarily a vector with the magni-
tude 1, a normalisation factor has to be introduced

ρ(t) =
∣∣∣∣deT

ds

∣∣∣∣
−1

=
∣∣∣∣deT

dt

dt

ds

∣∣∣∣
−1

= |ṙ|
∣∣∣∣deT

dt

∣∣∣∣
−1

.

The inverse of the magnitude of the derivative of eT with respect to the
parameter s is referred to as the radius of curvature ρ(t) . The quantity

κ(t) = ρ(t)−1

is called the curvature. Orthogonality of eN (t) and eT (t) follows from

d(eT (t) · eT (t))
dt

= 2
(

eT (t) · deT (t)
dt

)
= 0 .

• The complement of the two vectors

eB(t) = eT (t) × eN (t)

is the binormal vector. The three vectors defined above form a coordi-
nate trihedron.

2.3.2 Vectorial description of motion

The vectorial description of the motion of a point particle is illustrated with
the aid of a few examples. The uniform motion on a circle in the x - y plane
is the simplest. The position vector is given as
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r(t) = (R cosωt)ex + (R sinωt)ey + 0 ez (2.31)

or in the standard abbreviation for vectors

r(t) = (R cosωt, R sinωt, 0) . (2.32)

The position of the point particle is characterised by the end point of this
vector. The particle starts at the position r(0) = (R, 0, 0) and moves anti-
clockwise (Fig. 2.28a) on the circle. The velocity vector (Fig. 2.28b)

v(t) = (−Rω sinωt, Rω cosωt, 0) (2.33)

has the properties

(a) (b)

0r( )

r(t)

position vector

v(t)

r(t)

velocity vector

Fig. 2.28. Circular motion

(1) The magnitude of the vector v does not depend on time (v = |v| = Rω).
(2) The direction of the vector changes with time. The relation r(t) · v(t) = 0

shows, that the velocity vector and the position vector are orthogonal at
all times. The velocity vector rotates in the same sense as the position
vector, preceding it by 90◦.

(a) (b)

v(t)
y

e

x
e

hodograph, general

v(t)

v(0)

hodograph of the uniform
circular motion

Fig. 2.29. Hodograph
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The end points of the velocity vectors, which are arranged so that they
emanate from the origin, describe a curve which is called a hodograph
(Fig. 2.29a, hodos is the Greek word for path). The hodograph for the uni-
form motion on a circle is also a circle (Fig. 2.29b). In three-dimensional
space the parametric representation of a hodograph is composed of the three
components of the velocity vector {ẋ(t), ẏ(t), ż(t)}.

The acceleration vector a(t) for the uniform circular motion is

a(t) = (−ω2R cosωt, −ω2R sinωt, 0) = −ω2r(t) . (2.34)

It points at all times towards the centre of the circle, as it is (up to a positive
factor) the negative of the position vector. This type of acceleration carries the
name central (or centripetal) acceleration (Fig. 2.30). The magnitude

a(t’) a(t)

v(t)

Fig. 2.30. Circular motion: central acceleration

of the acceleration vector is also independent of time

a(t) = |a(t)| = ω2R . (2.35)

Relations which are used quite often in the discussion of uniform circular
motion are

a(t) ≡ a = ω v =
v2

R
. (2.36)

In the case of nonuniform motion on a circle the constant circular fre-
quency is is replaced by a function ω(t). The position vector and the resulting
velocity vector are

r(t) = (R cosω(t), R sinω(t), 0)

v(t) = (−Rω̇(t) sinω(t), Rω̇(t) cosω(t), 0) .

The velocity vector is again tangential to the circle. Its magnitude depends,
however, on time in this case (v = |Rω̇(t)|). The vectors r and v are still
orthogonal

r(t) · v(t) = 0 .

Each of the components of the acceleration vector is composed of two func-
tions
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a(t) = (−Rω̈(t) sinω(t) − Rω̇(t)2 cosω(t),

Rω̈(t) cosω − Rω̇(t)2 sinω(t), 0) .

The vectorial form

a(t) =
ω̈(t)
ω̇(t)

v(t) − ω̇(t)2r(t) (2.37)

shows more clearly that the acceleration is not central for a nonuniform,
circular motion.

The motion on a Lissajous ellipse in the x - y plane is characterised by the
position vector

r(t) = (a cosωt, b sinωt, 0) . (2.38)

The initial position is chosen so that r(0) = (a, 0, 0) and the sense of cir-
culation is counterclockwise (Fig. 2.31a). The velocity vector (Fig. 2.31b)
is

v(t) = (−aω sinωt, bω cosωt, 0)

in this case. The position vector and the velocity vector are only orthogonal
at the intersections of the ellipse with the coordinate axes for

ωt = 0, π/2, π, 3π/2, 2π

as

r(t) · v(t) = (b2 − a2)ω cosωt sinωt .

(a) (b) (c)

b

a

r(t)

0r( )

position vector

v(t)

r(t)

velocity vector

b

a

max

min

max

min

v

v

v

v

extrema of the
velocity

Fig. 2.31. Motion on a Lissajous ellipse

The magnitude of the velocity vector changes with time according to

v(t) = ω[a2 sin2 ωt + b2 cos2 ωt]1/2 .

The motion along the trajectory is not uniform. Consider a situation with
a > b (as in Fig. 2.31c). The velocity of the mass is maximal (vmax = aω)
for ωt = π/2, 3π/2, . . . , that is for points which are closest to the centre
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of the ellipse. The velocity is smallest (vmin = b ω) for ωt = 0, π, . . . .
The time for a complete revolution is, as for uniform motion on a circle,
T = 2π/ω . The acceleration vector reflects the genesis of the Lissajous
ellipse by a superposition of two harmonic oscillations of the same frequency

a(t) = (−ω2a cosωt, −ω2b sinωt, 0)
= −ω2r(t) .

The uniform motion on a circle and the motion on a Lissajous ellipse are,
nonetheless, characterised by the same set of differential equations

ẍ(t) = −ω2x(t) ÿ(t) = −ω2y(t)( z̈(t) = −ω2z(t))

or in vectorial form

r̈(t) = −ω2r(t) . (2.39)

The two different trajectories result solely from a difference of the initial
conditions

circle Lissajous ellipse

r(0) = (R, 0, 0) (a, 0, 0)

v(0) = (0, ωR, 0) (0, ωb, 0) .

For the circle the ratio v(0)/r(0) depends only on the frequency ω which
occurs explicitly in the differential equation (2.39). This is not the case for
the ellipse.

A more exotic trajectory is described by the vector

r(t) =
(

3at
1 + t3

,
3at2

1 + t3
, 0

)
a > 0 . (2.40)

This trajectory is illustrated in Fig. 2.32 for the time interval 0 ≤ t ≤ ∞ .

t = 13a/2

3a/2 Fig. 2.32. Motion on a Cartesian leaf

At time t = 0 the mass point starts at the origin. The initial motion is rela-
tively rapid. At time t = 1 (arbitrary units) the mass point has reached the
position (3a/2, 3a/2, 0) . It then slows down more and more and completes
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the (geometrically symmetric) complement of the loop only after an infinite
time interval. The trajectory is part of a figure which is named the Cartesian
leaf. The discussion of the velocity and the acceleration will be postponed
for a while (Chap. 2.3.3.1).

2.3.3 Area theorem

The three examples of the previous section can be used to illustrate a general
law, the law of areas. This theorem will also be discussed in more general
terms in Chap. 3.2.2 under the name of conservation of angular momentum.
For an arbitrary curve in space two neighbouring position vectors r(t) and
r(t + Δt) will span in good approximation a flat triangle, provided the time

Δ A 

Δr(t+  t)

r(t)

Fig. 2.33. Illustration of the law of areas

interval Δt is sufficiently small. This triangle can be characterised by the
cross product

ΔA ≈ 1
2
(r(t) × r(t + Δt)) .

The infinitesimal vector ΔA is perpendicular to the triangle (Fig. 2.33). Its
direction describes the orientation of the triangle in space. The length of the
vector corresponds (up to small corrections) to the magnitude of the area
which is covered by the position vector in the time interval Δt. As the cross
product r × r is a null vector, addition of this quantity does not change
anything

ΔA ≈ 1
2
(r(t) × (r(t + Δt) − r(t)) .

Multiplication with 1/Δt and the limit Δt → 0 leads to the result

d
dt

A(t) =
1
2

lim
Δt→0

{
r(t) ×

(
(r(t + Δt) − r(t)

Δt

)}

=
1
2
(r(t) × v(t))

which can be abbreviated (with a slight change in notation) as

Ȧ(t) =
1
2
(r(t) × ṙ(t)) . (2.41)
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The speed, with which a surface is covered by the position vector in time, is,
up to a factor 1/2, equal to the cross product of position vector and velocity
vector. The quantity Ȧ(t) is called the areal velocity (more precisely the
vector of the areal velocity). Its dimension is area per time, [L2/T ] .

Two related statements follow from the definition (2.41).

• The law of conservation of areas, which is often quoted as area the-
orem. The vector of the areal velocity is a constant vector, if a trajectory
lies in a plane containing the origin of the coordinate system and if the
cross product r(t) × v(t) is independent of time

Ȧ(t) =
1
2

C Ċ = 0 . (2.42)

Integration over time yields the result

A(t) − A(t0) =
1
2

C (t − t0) (2.43)

which is abbreviated as

ΔA =
1
2

C Δt .

The magnitude of this vector

|ΔA| =
1
2
|C| Δt (2.44)

expresses the area theorem: equal surface areas are covered in equal time
intervals under the conditions stated.

• The second statement concerns the question:

For what kind of trajectories is this theorem valid?

An answer is obtained by differentiation of the relation

r(t) × v(t) = C

with respect to time

(ṙ(t) × ṙ(t)) + (r(t) × r̈(t)) = 0 .

As the first term vanishes for all times, the answer is: The area theorem is
valid if the condition

r(t) × a(t) = 0 (2.45)

holds. The vector product of the position and acceleration vectors has to
vanish for all times. If neither of the two vectors vanishes for all times, this
is only possible if

a(t) = λ(t) r(t) . (2.46)

The vector a(t) is for all times directed to or away from the origin of the
coordinate system that has been chosen, in other words, if the acceleration
is a central acceleration.
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The two statements can be summarised in the form:

The relation

Ȧ(t) = 1
2 (r(t) × v(t)) = 1

2 C

is valid for a central acceleration. The motion is planar in this case,
the origin of the coordinate system lies in the plane and the area
theorem is valid in the form

ΔA ∝ Δt .

The relation

(r(t) × v(t)) = γ(t)C (2.47)

describes the more general situation that the direction of the vector of the
areal velocity is constant but the magnitude changes with time. The area
covered by the position vector in a given interval of time is then

A(t) − A(t0) = ΔA =
C

2

∫ t

t0

γ(t′)dt′ .

This relation can be used for the calculation of planar surface areas.

2.3.3.1 Determination of areas with the aid of the areal velocity. It
is instructive to discuss the three examples of Chap. 2.3.2 under this heading.
For the uniform motion on a circle the cross product of the position and
velocity vectors

r(t) × v(t) =

∣∣∣∣∣∣∣
ex ey ez

R cosωt R sinωt 0
−Rω sinωt Rω cosωt 0

∣∣∣∣∣∣∣ = ωR2 ez

is a constant vector. The area theorem is valid. The increase of the area in a
time interval Δt is (Fig. 2.34a)

ΔA =
1
2
ωR2Δt .

The well known formula for the area of a circle

A(T ) = πR2

is therefore obtained for a full revolution with

Δt → T =
2π
ω

.

The calculation of arbitrary segments of a circle would proceed in a similar
manner. The application of the law of areas allows the calculation of plane
areas by sweeping them with the position vector.

For the Lissajous ellipse the law of areas is also valid
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(a) (b)

Δ A 
 t 

 tΔt+

area of a circle

Δ +   t 2 t 2 t

Δ +   t 1 t 

1 t 

area of an ellipse

Fig. 2.34. Calculation of areas

r(t) × v(t) =

∣∣∣∣∣∣∣
ex ey ez

a cosωt b sinωt 0
−aω sinωt bω cosωt 0

∣∣∣∣∣∣∣ = abω ez .

The increase and decrease of the position vector and the velocity vector are
matched, so that equal areas are covered in equal times. This is the reason
why the velocity is larger for points closer to the origin (Fig. 2.34b). The
increase of the area in the time interval Δt is

ΔA =
1
2
abωΔt ,

for a full revolution one finds

A(T ) =
1
2
abωT = abπ ,

the area of the ellipse.
In order to avoid a possible misunderstanding about the motion on el-

lipses, it is worthwhile to digress briefly from the current discussion. The
Lissajous ellipses, which have been considered above, are obtained as solu-
tions of the differential equations of a two-dimensional harmonic oscillator.
They are not identical with the elliptic orbits of planetary motion (Kepler’s
ellipses, which will be discussed at length in Chap. 4.1). The differential
equation for a two-dimensional (or three-dimensional) harmonic oscillator is
(compare (2.39), p. 47)

r̈(t) = −ω2r(t) .

The differential equation for planetary motion is quite different

r̈(t) = − k′

r3(t)
r(t) . (2.48)

The area theorem holds in both cases. The form of the ’function’ in front of
the position vector is responsible for the difference in the time development
of the motion (see Fig. 2.35a, b).
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(a) (b)

origin in a focal point origin in the center

Fig. 2.35. Comparison of Kepler’s ellipse (a) with Lissajous’ ellipse (b)

The areal velocity for the motion along the border of the Cartesian leaf
is determined by

r(t) × v(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

3at
(1 + t3)

3at2

(1 + t3)
0

3a
(1 − 2t3)
(1 + t3)2

3a
(2t − t4)
(1 + t3)2

0

∣∣∣∣∣∣∣∣∣∣∣∣
(recognise the components of the velocity here), so that

Ȧ(t) =
9
2
a2 t2

(1 + t3)2
ez .

The magnitude of the vector of the areal velocity changes with time. The law
of areas is not valid. Nonetheless, the area of the leaf (Fig. 2.36) can readily
be calculated. Integration of the magnitude of Ȧ gives

A(t) =
9a2

2

∫ t

0

t′2

(1 + t′3)2
dt′ .

t = 1
 2 e

 1 e Fig. 2.36. Calculation of areas: Cartesian leaf

Half the area of the leaf is therefore given by
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A(1) =
9a2

2

∫ 1

0

t′2

(1 + t′3)2
dt′ .

The integral can be calculated with the aid of the substitution

τ = 1 + t′3, dτ = 3t′2dt′, τ(0) = 1, τ(1) = 2 .

The result is

A(1) =
3a2

2

∫ 2

1

dτ

τ2
=

3a2

2

[
−1

τ

]2

1

=
3
4
a2 .

For the calculation of the total area the improper integral (improper integrals
are discussed in Math.Chap. 1.4.1)

A(∞) =
9a2

2

∫ ∞

0

t2dt

(1 + t3)2

has to be considered. The evaluation is no problem

A(∞) =
3
2
a2 lim

b→∞

∫ b

1

dτ

τ2
=

3
2
a2 lim

b→∞

[
−1

b
+ 1

]

=
3
2
a2 .

Obviously the symmetry of the figure demands

A(∞) = 2A(1) .

The calculation of the area of the Cartesian leaf with standard methods is
definitely more involved.

The question of the calculation of areas by tracing the edges of a figure and
the connection with standard Riemann integration will be elucidated more fully
in Math.Chap. 5. This chapter also contains a discussion of the more general
case that the position vector marks an arbitrary surface in space.

2.4 Curvilinear coordinates

The last topic of the chapter entitled ’Kinematics’ is an introduction to the
subject of curvilinear coordinates.

2.4.1 Coordinates in the plane

The motion in a plane is of particular interest. It is useful to begin the
discussion for this reason with the two-dimensional world (and for the reason
that details are simpler).

coordinates
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2.4.1.1 Plane polar coordinates. The description of circular motion
(whether uniform or not) with a decomposition of the position vector in
Cartesian coordinates is possible but not optimal. It is simpler to discuss this
type of motion using plane polar coordinates. The basic quantities involved
are (Fig. 2.37a)

r(t) = [x2(t) + y2(t)]1/2 length of the vector r (2.49)

ϕ(t) = arctan
y(t)
x(t)

angle between r and the x−axis . (2.50)

These equations are the inverse of the transformation

x = r cosϕ y = r sinϕ . (2.51)

The time derivatives of the coordinates r(t) and ϕ(t) are usually denoted as

ṙ(t) =
dr

dt
ϕ̇(t) =

dϕ

dt
= ω(t)

r̈(t) =
d2r

dt2
ϕ̈(t) =

d2ϕ

dt2
= ω̇(t) = α(t) ,

in particular, for the uniform circular motion ((2.31), p.44)

r(t) = R ṙ(t) = 0 r̈(t) = 0

ϕ(t) = ωt ϕ̇(t) = ω ϕ̈(t) = 0 .

These results might lead to the conclusion that the uniform circular mo-
tion is a motion without acceleration. This is, as already discussed, not the
case. The incorrect conclusion is due to the fact, that the introduction of po-
lar coordinates is based on a bihedron (a set of two orthogonal basis vectors)
that changes with time. The (two-dimensional) Cartesian coordinate system
is rigidly fixed in the plane. With polar coordinates a system of basis vec-
tors is introduced which follows the motion of a mass point by changing the
orientation of the system. The basis vectors of this time changing coordinate
system are (Fig. 2.37b)

er(t) −→ in the direction of the instantaneous position vector
eϕ(t) −→ right-handed orthogonal complement.

The connection between the basis vectors of the Cartesian and the polar
coordinate systems is effected by the transformation

er(t) = cosϕ(t)ex + sinϕ(t)ey (2.52)
eϕ(t) = − sinϕ(t)ex + cosϕ(t)ey . (2.53)

The position vector has by definition the form

r(t) = r(t)er(t) (2.54)

in the time dependent polar coordinate system. The time change of the basis
vectors has to be taken into account
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(a) (b)

y

x

ϕ

r(t)

definition

ϕe
re

ye

xe

y

x

bihedron

Fig. 2.37. Plane polar coordinates

v(t) = ṙ(t)er(t) + r(t) ėr(t)

for the calculation of the velocity. The time derivative of the unit vector er(t)
can be obtained from the transformation between the two sets of basis vectors
as

ėr(t) = −ϕ̇ sinϕ ex + ϕ̇ cosϕ ey = ϕ̇ eϕ . (2.55)

(Prove this relation also by elementary, geometric arguments.) The decom-
position of the velocity vector with respect to the basis vectors of the polar
coordinate system can therefore be written as (Fig. 2.38)

v(t) = ṙ er + rϕ̇ eϕ = vr er + vϕ eϕ . (2.56)

The quantity vr (the projection of v on the vector er ) is the radial velocity,
the quantity vϕ (in the form radius times angular velocity) is the azimuthal
velocity. The first term in (2.56) is the velocity that would be registered by

 ϕv (t)

 rv (t)

v(t)

r(t)

y

x

 ϕ e

 r e
Fig. 2.38. Azimuthal vector in plane polar coor-
dinates

an observer, who does not realise that the coordinate system is moving. For
such a person the point particle does not leave the direction marked by er .
The second term is due to the relative motion of the two coordinate systems.
The form rϕ̇ emphasises the fact that the relative motion is more apparent
for a larger distance from the origin.

coordinates
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The basis vectors of the moving coordinate system (2.52) and (2.53) sat-
isfy the orthogonality relation

er(t) · eϕ(t) = 0

for all times. For this reason the magnitude of the velocity vector is

v(t) =
√

ṙ2 + r2ϕ̇2 . (2.57)

Differentiation of the velocity vector with respect to time yields the compo-
nents of the acceleration vector

a(t) = r̈ er + ṙ ėr + (ṙϕ̇ + rϕ̈)eϕ + rϕ̇ ėϕ . (2.58)

The time derivative of the vector eϕ can also be calculated with the trans-
formation (2.53)

ėϕ = −ϕ̇ cosϕ ex − ϕ̇ sinϕ ey = −ϕ̇ er . (2.59)

Insertion of the time derivatives of the basis vectors in (2.58) and sorting
leads to

a(t) = (r̈ − rϕ̇2)er + (2ṙϕ̇ + rϕ̈)eϕ = ar er + aϕ eϕ . (2.60)

The component ar is the radial acceleration, the component aϕ the azi-
muthal acceleration. From the point of view of the observer moving with
the coordinate system the expected term is r̈ er , all the remaining terms,
which contain derivatives of the angular coordinate, are consequences of the
relative motion of the polar coordinate system with respect to the (space
fixed) Cartesian system.

Every planar problem can be discussed in terms of polar coordinates. The
question is, however: for which class of problems might this approach be most
useful? Some examples will prepare the answer:

(i) The uniform circular motion (once again) with r(t) = R and ϕ(t) = ωt
is characterised by

r(t) = R er v(t) = Rω eϕ a(t) = −Rω2 er .

(ii) For nonuniform motion on a circle with r(t) = R and Ṙ = 0, a more
general angular function ϕ(t) has to be considered, for example

ϕ(t) = α sin γt

which would describe an oscillation on a section of a circle (Fig. 2.39).
The three kinematic vectors are

r(t) = R er v(t) = Rϕ̇eϕ (2.61)

a(t) = −R2ϕ̇2 er + Rϕ̈eϕ . (2.62)

The acceleration is not central as

a(t) �= f(t)r(t) .
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α

π/2γt =

t = 0

Fig. 2.39. Oscillation on an arc

(iii) The motion on a Lissajous ellipse (for details see Probl. 2.8). The
starting point is in this case

r(t) =
√

a2 cos2 ωt + b2 sin2 ωt

ϕ(t) = arctan
(

b

a
tanωt

)
.

The time dependence of the angle is more complicated than ϕ(t) = ωt.
The kinematic vectors are therefore

r(t) = r(t)er

v(t) = −1
r
(a2 − b2)ω sinωt cosωt er +

abω

r
eϕ

a(t) = −ω2r(t)er .

The last line follows only after a slightly longer computation, if one starts
explicitly with the evaluation of (2.60).

The use of polar coordinates does not seem to be too useful for the last
example. Nonetheless the statement can be made:

The choice of polar coordinates is optimal for problems
with a central acceleration (central force problems).

This statement can be confirmed by two arguments:

• The first is a discussion of the area theorem in terms of polar coordinates.
For this purpose a complete three-dimensional coordinate system, which is
spanned by the unit vectors er(t), eϕ(t) and ez , is required (Fig. 2.42a,
p. 61, with the replacement ρ → r)3. For a trajectory in the x - y plane the
cross product of the position and the velocity vectors is

(r × v) =

∣∣∣∣∣∣
er eϕ ez

r 0 0
ṙ rϕ̇ 0

∣∣∣∣∣∣ = r2ϕ̇ ez .

This yields for the vector of the areal velocity ((2.41), p. 48)

Ȧ(t) =
1
2
r(t)2ϕ̇(t)ez .

3 Such a coordinate system is, as shown below, the basis for the discussion of
cylindrical coordinates in three-dimensional space.

coordinates
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The magnitude of this vector is independent of time

|Ȧ(t)| = Ȧ(t) =
1
2
r(t)2ϕ̇(t) = const. (2.63)

The derivative of this quantity with respect to time vanishes for problems
with central acceleration

Ä(t) = rṙϕ̇ +
1
2
r2ϕ̈ =

r

2
(2ṙϕ̇ + rϕ̈) = 0 ,

as a comparison of this result with the decomposition of the acceleration
vector (2.60) leads to the statement

Ȧ = const. ←→ aϕ = 2ṙϕ̇ + rϕ̈ = 0 . (2.64)

If the theorem of area conservation is valid, then the acceleration is central
and vice versa. This is the reason why the use of polar coordinates is
a more efficient choice in many practical problems, for instance for the
determination of the trajectory from a given, radial acceleration.

• The second is the demonstration that the solution of the equations of mo-
tion is simpler in terms of plane polar coordinates. The standard form of
a central acceleration is often written as

a(t) = −f(r(t))er , (2.65)

where f is an arbitrary function of the separation of the mass point from
the origin. Examples are:

f(r) = kr : the two-dimensional harmonic oscillator

f(r) =
k′

r2
: Kepler’s (planetary motion) problem.

The problem, that is posed, is the determination of r(t) and ϕ(t) for a
given function f(r) and the initial conditions r(0), ṙ(0), ϕ(0) and ϕ̇(0).
The solution can be obtained with the following steps:
(1) From aϕ = 0 follows r2ϕ̇ = C or

ϕ̇ =
C

r2
.

C is determined by the initial conditions.
(2) The differential equation for the function r(t) is

ar = −f(r) or r̈ − rϕ̇2 = −f(r) .
Insertion of ϕ̇ from step (1) gives a differential equation for r(t)

r̈ = −f(r) +
C2

r3

which has to be solved. How this is done, will be discussed in Chap. 4
(and in Math.Chap. 2 and Math.Chap. 6). Assuming that the solution
has been found, the last step is

(3) Insert r(t) into the equation for ϕ̇ and integrate

ϕ(t) − ϕ(0) =
∫ t

0

C

r(t′)2
dt′ .
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The advantage of the use of polar coordinates is apparent, if it is contrasted
with the solution of the central acceleration problem in terms of Cartesian
coordinates. The system of differential equations

ẍ = − cosϕf(r) = − x√
x2 + y2

f(
√

x2 + y2 )

ÿ = − sinϕf(r) = − y√
x2 + y2

f(
√

x2 + y2 )

has to be discussed in this case. The solution in terms of Cartesian coor-
dinates is a more difficult task (with the exception of the two-dimensional
harmonic oscillator), as the two differential equations are in general cou-
pled.

2.4.1.2 Additional sets of coordinates in plane. There exists a collec-
tion of curvilinear coordinates4 in two and three space dimensions for the
purpose of an optimal adaptation to specific geometrical situations. Instead
of presenting this collection in detail, it seems more useful to illustrate the
pattern which dictates the choice of a particular set of coordinates.

With the use of Cartesian coordinates, a plane is covered with a grid of
orthogonal sets of straight lines (x = const., y = const.). At each point of
the plane there exists a local coordinate system, which is connected with
the original choice by a translation. As the orientation of all local coordinate
systems is the same as that of the original system and as the kinematic vectors
v and a are free vectors (they can be moved around in the plane maintaining
their length and direction), the decomposition of these vectors is the same in
all local systems.

On the other hand, with polar coordinates (Fig. 2.40b) the plane is cov-
ered by families of concentric circles and rays (r = const., ϕ = const.). The

(a) (b)

y = constant

x = constanty

x

covering of the plane
with a grid of straight lines

= constant ϕ

r = constant

y

x

rays and circles
cover the plane

Fig. 2.40. Cartesian and polar coordinates

4 The useful reference [3] is unfortunately not in print any more. Check your
library.

coordinates
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basis vectors of all local coordinate systems are still orthogonal, but the ori-
entation of the bihedron changes from point to point. The decomposition of
the kinematic vectors differs from one local system to the next. For a prob-
lem that is adapted to this pattern of coverage, differential equations are,
however, decoupled and other quantities can have a simpler form.

An additional example of curvilinear coordinates in a plane are confocal
elliptic coordinates (Fig. 2.41), which are set up by a grid of confocal ellipses
and hyperbolae. The basis vectors of the local coordinate systems (with the
origin at the intersection of the two sets of curves) are orthogonal. The de-

Fig. 2.41. Confocal elliptic coordinates: grid of confo-
cal ellipses and hyperbolae

composition of the kinematical vectors, although it is more complicated in
the general case, is simpler if the coordinates are in conformance with the
symmetries of the problem (as e.g. for a double star system with one moon).

Alternative sets of orthogonal grids may be useful for the discussion of
specific problems. There is no limit to the ingenuity.

2.4.2 Spatial coordinates

There exist two important sets of curvilinear coordinate systems in three-
dimensional space: cylindrical (or cylinder) coordinates and spherical polar
coordinates (for short, spherical coordinates).

2.4.2.1 Cylinder coordinates. Cylinder coordinates are the simplest ex-
tension of polar coordinates in the plane. The position of a point P in space
is in this case specified by the following quantities (Fig. 2.42a):

ρ(t) → shortest distance of P from the z - axis

ϕ(t) → angle between the line OP ’ and the x - axis
(OP ’ is the projection of the line OP
- origin to P - onto the x - y plane)

z(t) → shortest distance of P from the x - y plane.

In analogy to the coverage of a plane by grids of curves, points in space are
described by the intersection of families of orthogonal surfaces (Fig. 2.42b).
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(a) (b)

O

z

P’ 

P
ρ

ϕ

z

y

x

definition

P’ 

O

P

z = constant

= constantρ

= constantϕ

z

y

x

intersection of surfaces

Fig. 2.42. Cylinder coordinates

The intersection of a cylinder (ρ = const.) with a plane (z = const.) and a
half plane (ϕ = const.) is used for cylinder coordinates. The transformation
between Cartesian and cylinder coordinates is given by

x = ρ cosϕ y = ρ sinϕ z = z , (2.66)

the inverse is

ρ =
√

x2 + y2 ϕ = arctan
y

x
z = z . (2.67)

These coordinates are also referred to a time changing (local) coordinate
system (Fig. 2.43a, 2.43b), which is characterised by the basis vectors

eρ(t) , eϕ(t) , ez . (2.68)

(a) (b)

(t)ϕe

 (t)ρe 

ze

basic trihedron

ϕ
e

z

ρ
e

ze

local trihedron

Fig. 2.43. Cylinder coordinates

The decomposition of the kinematic vectors with respect to the system of
cylinder coordinates does not differ greatly from the case of polar coordinates
(compare (2.54), (2.56) and (2.60))

coordinates
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r(t) = ρ eρ(t) + z ez (2.69)
v(t) = ρ̇ eρ(t) + ρϕ̇ eϕ(t) + ż ez (2.70)
a(t) = (ρ̈ − ρϕ̇2)eρ(t) + (ρϕ̈ + 2ρ̇ϕ̇)eϕ(t) + z̈ ez . (2.71)

The orthogonality of the local trihedron leads to the following magnitudes of
these vectors

r(t) =
√

ρ2 + z2 (2.72)

v(t) =
√

ρ̇2 + ρ2ϕ̇2 + ż2 (2.73)

and a similar expression for a(t).

2.4.2.2 Spherical coordinates. In terms of spherical coordinates a point P
in space is characterised by the following quantities (Fig. 2.44a):

r(t) → distance of the point from the origin

θ(t) → polar angle (angle between OP and the z - axis)

ϕ(t) → azimuthal angle (angle between the projection of OP
onto the x - y plane and the x - axis).

(a) (b)

definition intersection of surfaces

Fig. 2.44. Spherical coordinates

This characterisation corresponds to the specification of a point as an inter-
section (Fig. 2.44b) of concentric spheres (r = const.), cones (θ = const.,
with the range 0 ≤ θ ≤ π) and half planes (ϕ = const. , with the range
0 ≤ ϕ ≤ 2π) .
The set of transformations between Cartesian and spherical coordinates are

x = r cosϕ sin θ

y = r sinϕ sin θ (2.74)
z = r cos θ .

The first two equations describe the projection of the position vector onto
the x - y plane and a subsequent projection on each of the coordinate axes.

x

ϕ
y

O r

Pθ

z
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The last equation corresponds to a direct projection of the position vector
on the z - axis. The inverse of these transformations is

r =
√

x2 + y2 + z2 ϕ = arctan
y

x
θ = arctan

√
x2 + y2

z
. (2.75)

The orthogonal, local trihedron (Fig. 2.45) is specified by
er(t) unit vector in the radial direction

eθ(t) unit vector orthogonal to er,
tangential to the sphere in the direction of a circle of longitude

eϕ(t) orthogonal complement defined by eϕ = er × eθ ,
a unit vector tangential to the sphere in the direction of a
circle of latitude.

θe

ϕe

re

Fig. 2.45. Spherical coordinates: local trihedron

In order to determine the decomposition of the kinematical vectors with
respect to the local trihedron the transformation between the Cartesian and
the spherical basis vectors is needed. The first of these transformations is
(Fig. 2.46a)

er = (sin θ cosϕ)ex + (sin θ sinϕ)ey + (cos θ)ez . (2.76)

This corresponds to the Cartesian decomposition of a vector from the origin
to a point with r = 1 , in which the Cartesian coordinates are expressed in
terms of spherical coordinates (2.74). The vector eθ points along a circle of
longitude and is rotated by an angle π/2 with respect to er (Fig. 2.46b). If
the angle θ in (2.76) is replaced by θ + π/2 , the result

eθ = (cos θ cosϕ)ex + (cos θ sinϕ)ey + (− sin θ)ez (2.77)

is obtained. The third unit vector (Fig. 2.47, with a view along the z - axis)
is

eϕ = − sinϕ ex + cosϕ ey . (2.78)

The statement follows directly from the definition of this vector by a cross
product eϕ = er × eθ or with the argument: the vector is tangential to a
circle of latitude. Hence it does not possess a z - component (θ = π/2). It is
orthogonal to the projection of er onto the x - y plane. The angle with respect

coordinates
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(a) (b)

x

y
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θ

re

z

definition of the vector er

θex

θ+π/2
y

re

z

definition of the vector eθ

Fig. 2.46. Definition of the unit vectors er and eθ

y

x

ϕ

ϕ

’(t)

(t)

ϕe r   xy(e )

Fig. 2.47. Definition of the vector eϕ

to the x - axis is thus ϕ′ = ϕ+π/2 . Replacing ϕ by ϕ′ and θ by π/2 in (2.76)
yields e.g. the x - component, namely − sinϕ (see also Probl. 2.10).

The position vector in spherical coordinates is by definition

r(t) = r(t)er . (2.79)

The velocity vector is calculated via

v(t) = ṙ(t)
= ṙ er + r ėr .

The time derivative of the basis vector er can be obtained from the relation
(2.76) as

ėr = θ̇(cos θ cosϕ ex + cos θ sinϕ ey − sin θ ez)
+ϕ̇(− sin θ sinϕ ex + sin θ cosϕ ey) .

Direct comparison with the vectors eθ and eϕ in (2.77) and (2.78) leads to

ėr = θ̇ eθ + ϕ̇ sin θ eϕ , (2.80)

so that finally the relation

v(t) = ṙ er + rθ̇ eθ + rϕ̇ sin θ eϕ (2.81)
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results for the velocity vector. The polar angle and its time derivative are

θ =
π

2
and θ̇ = 0 ,

if a mass point moves only in the x - y plane, so that

v(t) = ṙ er + rϕ̇ eϕ .

This limit agrees with the result (2.56) for plane polar coordinates.
The decomposition of the acceleration vector a(t) = v̇(t) can be found

in the same manner. The calculation and the final result are, however, quite
cumbersome. For this reason it will not be given here. The result can be
found in D.tail 2.2.

This concludes the discussion of the most important sets of curvilinear
coordinates. They will be used shortly. The transition from Cartesian to
curvilinear coordinates, that has been presented here in an elementary fash-
ion, is not the most elegant. The discussion of the Lagrange formulation of
mechanics in Chap. 5.3 provides a more elegant and general method for the
introduction of ’generalised’ coordinates.

coordinates



3 Dynamics I: Axioms and Conservation Laws

Three axioms, first formulated by Newton, are the foundation of classical
mechanics. The first axiom addresses the question of appropriate systems of
reference (inertial systems) for the discussion of mechanical problems, the
second introduces the basic equations of motion. The third axiom can be
considered as an attempt to comment on the fundamental interactions that
are found in nature.

Concepts that are introduced with the axioms are the mass (in particu-
lar the inertial mass) and forces. Once these basic concepts are established,
additional quantities such as momentum, work, energy, angular momentum,
torque etc. can be discussed. If the sole aim of mechanics were the study
of the motion of objects (mass points or objects composed of mass points)
one could concentrate on the second axiom. The additional quantities just
indicated are, however, distinguished by the fact that they satisfy, under suit-
able conditions, conservation laws. These laws can be used to extract partial
statements on or gain insight into mechanical systems with relatively little
effort.

The present chapter contains a detailed discussion of the three axioms and
a step by step approach towards the basic dynamical concepts of mechanics.

3.1 The axioms of mechanics

The three axioms were published in the main work of Newton ’Philosophiae
naturalis principia mathematica’, in 1687. It is necessary to address the con-
cepts of

force and mass
before a discussion of the actual axioms can be undertaken.

3.1.1 The concept of force

The word ’force’ is part of everyday language. If a person pulls at an object
or pushes it, one would state: ’the object is subjected to a force’. A series of
simple (thought) experiments are, nonetheless, useful in order to gain a more
precise notion of this concept.

R.M. Dreizler, C.S. Lüdde, Theoretical Mechanics, Graduate Texts in Physics,  
DOI 10.1007/978-3-642-11138-9_3, © Springer-Verlag Berlin Heidelberg 2010 
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1. A force is a vectorial quantity F . The direction of the push or pull makes a
difference. Two forces of the same strength, which are applied in (exactly)
opposite directions, cancel each other.

2. The strengths of different forces (the magnitudes of the vector) can be
compared if the forces are applied to a spring (Fig. 3.1). The extension
of a spring is (according to Hooke’s law, assuming the extension is not to
large) proportional to the force applied (x ∝ F ). This allows a comparison
of forces (more precisely, of the magnitude of forces) by comparison of
the extensions F/F ′ = x/x′.

Fx

  ’Fx’ Fig. 3.1. Simple comparison of forces

3. The application of a force to an object, that can move freely, leads to a
motion of the object or to a change of its motion. Here mass plays a role.
The more ’massive’ an object is, the smaller is the change of its motion
for a given force.

Such simple considerations can be helpful in illustrating the idea of forces. For
a quantitative discussion it is necessary to consider the second of Newton’s
axioms, which states in its simplest form

F = ma . (3.1)

This equation should be read as follows. There exists a victim, the mass
point m. This object reacts with an acceleration a = F /m if a force F is
applied.

The equation (3.1) constitutes a simple form of the basic law of motion
of mechanics. The acceleration of a mass point m is determined by the force,
which acts on it. The knowledge of the acceleration and the initial conditions
at a time t0 allows the calculation of the motion of the object for t > t0 (as
discussed in terms of simple examples in Chap. 2.2).

This argumentation can be reversed. The acceleration of an object of
mass m can be extracted from its trajectory. Knowledge of the acceleration
then implies knowledge of the force (the total force) that influences the motion
of the object. The second axiom is the tool which can be used to put both
the concept of force as well as the concept of mass on a quantitative basis.
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F
�

�

· m

· 1/m
a �

�

differentiation

differential equation
r(t) .

3.1.2 Inertial and gravitational mass

In order to obtain a more precise idea of the concept of mass the following
thought experiment can be performed: accelerate two masses m1 and m2

from rest with the same force F . It is not necessary at this stage to actually
measure the strength of the force. The only requirement is equality of the
forces in the two experiments. On the basis of the axiom the resulting linear
motion is characterised by the statement

F = m1a1 = m2a2 −→ m1

m2
=

a2

a1
.

The accelerations a1 and a2 can be measured (for example by analysis of the
time change of the position xi(t)). The measured (e.g. constant) accelera-
tions yield the ratio of the two masses. For an absolute statement one needs
a ’standard mass’. This has been defined by international convention. It is
the mass of 1 kilogram [kg], which is stored in Sèvres in the vicinity of Paris.
With the choice of a standard mass, the second axiom provides a dynamical
method to determine masses quantitatively. A more massive object will ex-
perience a smaller acceleration for a given force. The mass is a measure of
the resistance of an object (mass point) against changes of motion. Masses
which are determined with this dynamical method carry the name inertial
mass.

The introduction of a standard mass and the second axiom lead to a
unit of measurement for the force. In the SI System (Système International
with the basic units meter, kilogram (corresponding to the dimension [M])
and second) a force, which accelerates a mass of 1 kg with 1m/s2 is called
1 Newton (N)

1N = 1
kg m

s2
.

The unit of the force in the CGS-system (centimetre, gram, second, still
preferred in Theoretical Physics) is dyne with the symbol dyn

1 dyn = 1
g cm
s2

.

The factor for the conversion of these units is 1N = 105 dyn .
The term ’inertial mass’ needs to be discussed more explicitly. The de-

termination of masses in everyday life will in most cases not be based on the
dynamical method indicated. Normally one uses a pair of scales (Fig. 3.2a).
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(a) (b)
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a pair of scales

ER
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Fig. 3.2. Illustration of the concept of the gravitational mass

The gravitational force of the earth, which acts on the object and on the
weights, is compared in this method. For the gravitational force between two
mass points with m∗

1 and m∗
2 at a separation r Newton gave the relation (see

Chap. 3.1.6)

F = γ
m∗

1m
∗
2

r2
. (3.2)

The strength of the interaction is determined by the gravitational constant γ
(see Chap. 3.2.4 for a more extensive discussion of the law of gravitation).
For the moment it is sufficient to state: even if the objects on the scales and
the earth are no mass points, one may use this formula for the specification
of the weight G . The weight at the surface of the earth is (Fig. 3.2b)

G = m∗
[
M∗

Eγ

R2
E

]
= m∗g . (3.3)

The gravitational constant γ and the gravitational acceleration g , which has
already been introduced in Chap. 2.1, are related via the mass of the earth M∗

E

and its radius RE (assuming a spherical shape). It should be noted that the
weight of an object corresponds to the force, which the earth exerts on the
object with mass m∗ .

There is no reason, why the mass m∗, which enters into the law of gravi-
tation, and the mass m, which measures the resistance against a change of its
motion, should be identical. For this reason the mass in the law of gravitation
is termed the gravitational mass (and denoted by m∗). The equation of
motion that describes the free fall in the vicinity of surface of earth has to
be specified correctly as

ma = m∗g

or in the form of a differential equation

r̈ =
m∗

m
g .

Starting in the year 1915 (the date of the formulation of the general theory
of relativity by A. Einstein) attempts have been undertaken to find out,



3.1 The axioms of mechanics 71

whether there is any difference between the two masses. At the present time
the answer is

m = m∗

with an accuracy of Δm/m = (m−m∗)/m ≈ 10−10 . This corresponds to an
accuracy of 10−8 % .

The reader may wonder, why one goes to such lengths with respect to
a point which seems like splitting hairs. The reason is the question of the
validity of the general theory of relativity, which will not be detailed at all at
this point. In order to answer the question implied, it is sufficient to describe
another (rather hypothetical) experiment, which however explains the main
point (see Fig. 3.3). The laboratory, in which this experiment will be per-
formed, is a large closed container. The laboratory is first located on earth.

Earth

experiment on earth

 a=-g

acceleration of the lab
in outer space

g
experiment
in outer space

Fig. 3.3. Concerning the difference between the inertial and gravitational masses

A physicist in the laboratory weighs an object and notes

G = m∗g .

While the physicist takes a rest, the lab is transported into outer space to
a position, which is free of gravitational effects. The container (and its con-
tents) is then accelerated with a constant acceleration a = −g . The physicist
(still sleeping) and the object first float in the container, but after the on-
set of the acceleration they are deposited onto one side and are accelerated
with the container. The last two statements describe the situation from the
point of view of an outside observer. The physicist (now awake again) in-
terprets the situation as follows. He/she measures an apparent acceleration
a′ = +g, which emulates the original acceleration due to gravity. The second
measurement of the ’weight’ would result in

G′ = mg

in this case. It is the inertial mass which is recorded (even if the experimenter
does not know this). It would be possible to distinguish the two situations
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(position on the earth at rest with gravitation and position in outer space
with a nongravitational acceleration) via G �= G′ , if the two masses were
different (m �= m∗). This should, according to Einstein, not be possible. The
general theory of relativity is based on the postulate: there is, as a matter of
principle, no difference between the acceleration due to gravity or any other
cause. The theory would not be valid, if the relation

m∗ = m

would not be correct. This equality will always be used in the chapters that
follow.

3.1.3 The axioms

After these preparatory remarks the discussion of the axioms proper can be
undertaken. The axioms are

Axiom 1:
A mass point is at rest or moves with a constant velocity,
if it is not subjected to any forces.

Axiom 2:

The equation of motion

d
dt

(mv) = F
ṁ=0−→ ma = F (3.4)

is valid, if a force F acts on a mass point m . This statement
is an extension of the simpler form ma = F , which is valid
for a mass which does not change with time. The extended
version covers situations with masses that change with time.

Axiom 3:

If a mass point m1 exerts a force F 12 on a mass m2, then
the mass m2 exerts a force F 21 on m1 . The two forces have
the same magnitude but point in opposite directions.

F 12 = −F 21 . (3.5)

This compact formulation of the axioms definitely calls for a more exten-
sive comment. Concerning the first axiom, the following remarks apply.

3.1.4 The first axiom: inertial systems

This axiom has already been formulated by G. Galilei using similar words. It
is also called the principle of inertia. At first glance it seems to be superfluous,
because the second axiom leads, for F = 0 , to the statement

d
dt

(mv) = 0 −→ mv = const. −→ v =
const

m
.
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The specific inclusion of the axiom makes nonetheless good sense. It expresses
the fact, that laws of motion can only have a precise meaning if they are re-
ferred to an appropriate frame of reference. The state of rest and the state
of uniform motion are equated in the axiom. The description of the time
development of the motion of an object from the point of view of two ob-
servers with different frames of reference is completely equivalent, provided
the frames move with respect to each other with a uniform velocity.

The details of the corresponding argumentation are: two coordinate sys-

(a) (b)

relv    t
relr  

R(t)

2S
1S

relative motion

2r  (t)1r  (t)

R(t)

2S
1S

coordinate transformation

Fig. 3.4. The Galilei transformation

tems S1 and S2 move with a uniform velocity with respect to each other. The
position of the origin of system S2 as seen from the perspective of S1 is given
by (Fig. 3.4a)

R(t) = rrel + vrelt . (3.6)

The position of a mass point can be measured by each of the two observers.
The relation

r1(t) = R(t) + r2(t) = rrel + vrelt + r2(t) , (3.7)

where r1(t) is the position at time t from the point of view of S1 and r2(t) the
position at time t from the point of view of S2, relates the two observations
(see Fig. 3.4b). This equation, which describes a coordinate transformation,
is called a Galilei transformation1.

A relation between the velocities of the object as viewed from the two
systems is obtained, if the transformation (3.7) is differentiated with respect
to time

v1(t) = vrel + v2(t) . (3.8)
1 An implicit assumption is used in the formulation of this transformation law. It is

assumed, that the measurement of time is independent of the frame of reference:
t1 = t2 = t. This apparently reasonable assumption does not hold according to
the special theory of relativity. In classical mechanics it can be assumed to be
(approximately) correct.
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The velocity v1 is the velocity of the object from the point of view of S1, the
velocity v2 from the point of view of S2. The formula (3.8), which is known
as the theorem of addition of velocities, allows a direct conversion of the
two points of view.

Differentiating once again leads to the statement

a1(t) = a2(t) .

This result may be interpreted in the following fashion: the accelerations of a
mass point as registered by each of the two observers are equal. This implies,
that the forces as seen by each of two observers have to be equal as well, if
it is assumed that the mass is independent of the point of view

ma1 = ma2 =⇒ F 1 = F 2 .

For each of the observers the same form of the equation of motion is valid

ma1 = F 1 ma2 = F 2 .

The equations of motion of the two observers are completely equivalent. Any
differences of the actual trajectories registered are solely due to the difference
of the initial conditions.

The following ’experiment’ (see Fig. 3.5 and compare the arguments in
Chap. 1) illustrates the consequence of these remarks: Assume that the two
frames of reference (two-dimensional) coincide at time t = 0 and that sys-
tem S2 moves (with respect to S1) with the velocity vrel in the direction of
the positive x -axis. The observer in S2 throws an object (from his point of
view) vertically into the air. He/she records a linear free fall motion, which
is characterised by the differential equation ma2 = mg and the initial condi-
tions

r2(0) = (0, 0), v2(0) = (0, v0) .

An observer associated with S1 registers a parabola, which is characterised
by the differential equation ma1 = mg and the initial conditions

r1(0) = (0, 0), v1(0) = (vrel, v0) .

The explicit solutions of the problems of motion of the two observers are

r1(t) = (vrelt,−g

2
t2 + v0t) v1(t) = (vrel,−gt + v0)

r2(t) = (0,−g

2
t2 + v0t) v2(t) = (0,−gt + v0) .

These results lead to the following equations for the trajectories in the two
systems

y1 = − g

2v2
rel

x2
1 +

v0

vrel
x1

x2 = 0 with y2,max =
v2
0

2g
.
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The preceding discussion can be summarised in the form: the question of
rest or uniform motion is a question of the point of view. The equation of
motion does not change with the point of view. All coordinate systems, that
move uniformly with respect to each other, are, in this sense, equivalent. Such
systems are called inertial systems. The first axiom should be considered
as a definition of the concept of an inertial system.

21S  / S

S1, S2 at the
time t = 0

relv

S21S

S1, S2 at the
time t ≥ 0

S21S

projectile motion,
as viewed by S1 and S2

Fig. 3.5. Projectile motion as viewed from two different inertial systems

The situation is quite different if an inertial system S1 and a system S2

which is accelerated with respect to S1 is considered. The two systems are not
equivalent in this case. The simplest situation occurs for a uniform relative
acceleration of system S2 . The equation of motion in system S1 is

mr̈1 = F 1 .

The Galilei transformation should now be replaced by the transformation

r1(t) = rrel + vrelt +
arel

2
t2 + r2(t) . (3.9)

The graphical representation of this equation still corresponds to Fig. 3.4b,
but the actual form of R(t) differs. Differentiation of (3.9) leads to

r̈1 = arel + r̈2 −→ mr̈1 = marel + mr̈2

so that the replacement of mr̈1 in the equation of motion yields

mr̈2 = (F 1 − marel) = F 2 . (3.10)

The force that acts in S2 is different from the force in S1 . The additional term
is solely a consequence of the relative acceleration. For this reason it is called
an apparent force. Apparent forces are discussed in detail in Chap. 6.2.

The observation of the time development of the motion of an object from
the point of view of the earth poses some problems, as a coordinate system
associated with the earth is not an inertial system. The earth rotates about
the North-South axis as well as around the sun. A rotation is an accelerated
form of motion. The effect of the rotation of the earth may be neglected
in many instances, so that the earth-bound system can be considered to be
(sufficiently) inertial. Effects due to the apparent forces are, on the other
hand, definitely observable (e.g. for the Foucault pendulum or, in nature,
through the different structure of cyclones on the northern or the southern
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hemisphere (see Chap. 6.2)). A coordinate system that is fixed to the sun, is
also no inertial system. The sun rotates around the centre of our galaxy. The
motion of the sun is, however, a better approximation of a uniform, straight
line motion. The solar-bound system is a better approximation of an inertial
system than the earth-bound system.

Corrections to the Galilei transformation, which concern the comparison
of time scales as well as of masses observed in different inertial reference
systems, are necessary. These corrections do not touch on the question of
equivalence. They lead, however, to a completely different form of the trans-
formation laws. As they only become apparent, if at least one of the velocities
involved in (3.8) is of the order of the velocity of light, they belong to the
domain of the special theory of relativity (see Vol. 2). For velocities of the
usual kind, the ’relativistic corrections’ can safely be neglected.

3.1.5 The second axiom: momentum

The second axiom is, as already discussed, the central law of motion of clas-
sical physics. Classical mechanics is a deterministic theory. If the forces, that
act on a mass point, and the position and the velocity at a particular time
are known, the previous as well as the future history of the motion can be
calculated (Fig. 3.6a). This statement is, as indicated in the short excursion
on ’chaotic motion’ in Chap. 5.4.3, valid for particular classes of problems or
at least for more or less short intervals of time.

(a) (b)

2F(t )

1F(t )

0t

classical quantal

Fig. 3.6. Concerning determinism

The deterministic point of view does not hold for the dynamics of the
micro-world (quantum mechanics). For instance, it is, as a matter of principle,
not possible to state the (mechanical) initial conditions necessary for the
quantum description of the motion of an electron. This is the content of
Heisenberg’s uncertainty relation: a reasonably accurate determination of the
position (for instance with a diaphragm, Fig. 3.6b) forbids an equally accurate
determination of the velocity. The uncertainty relation is the reason that the
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motion of micro-particles can only be analysed in terms of probabilities (see
Vol. 3).

The quantity mv, which enters into the more general formulation of the
second axiom

d
dt

(mv) = F (3.11)

is the momentum vector (for short momentum)

p = mv . (3.12)

The second axiom therefore states that the force which acts on a mass point
leads to a time change of its momentum. This general formulation of the
second axiom is only needed for special problems of classical mechanics, as
e.g. for the calculation of the motion of a rocket taking into account the
change of its mass due to the loss of fuel (see Probl. 3.3-3.5). The fact that
momentum is the dynamical quantity for the characterisation of motion and
not the velocity can easily be experienced by trying to stop two objects with
the same velocity but different mass (e.g. a fly and a truck).

3.1.6 The third axiom: interactions

The formulation of the third axiom is an attempt to comment in a general
fashion on the fundamental forces of nature. At Newton’s time only gravita-
tion was known. Today it is assumed that there exist four fundamental forces,
which will be briefly presented here, even though they are better discussed
in the context of elementary particle physics.

The story begins with the law of gravitation (3.2), which Newton derived
from the data for the motion of planets2, with the aid of the argument

trajectory −→ acceleration −→ force.

Newton was able to exploit a summary of the details of planetary motion
in the form of Kepler’s laws. These laws, which crowned the observation
of planetary motion over more than one thousand years, are:

1. The trajectories of planets are ellipses (Fig. 3.7). The sun is in one of the
focal points of the ellipses.

2. The position vector from sun to planet (the radius vector) covers equal
areas in equal time intervals (compare Chap. 2.3.3).

3. The squares of the period T of the planets are proportional to the third
power of the semi-major axis a

T 2 = κa3 .

The constant of proportionality κ is, in good approximation, the same
for all the planets.

2 A complete discussion of the problem of planetary motion (with all mathematical
details) is found in Chap. 4.1.
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a Fig. 3.7. Parameters of the ellipse

A simple derivation of the gravitational law uses the fact that most of the
planetary ellipses are quite good circles. In order to characterise the shape of
ellipses the concept of eccentricity is used. The eccentricity is defined via
the distance e between each of the focal points and the centre of an ellipse.
For an ellipse with the semiaxes a, b (a ≥ b) this distance is (Fig. 3.7)

e = [a2 − b2]1/2 .

The eccentricity ε is obtained by division with the length of the semi-major
axis

ε =
e

a
=
[
1 − b2

a2

]1/2

0 ≤ ε ≤ 1 .

It is a measure of the ’flatness’ of the ellipse. A circle is characterised by
ε = 0 . The more ε approaches the value 1, the flatter is the ellipse. The
inverse of the definition above reads

b

a
= [1 − ε2]1/2 ≈ 1 − 1

2
ε2 ,

where the expansion is valid for ε 
 1 . The eccentricities of the nine planets
are listed in Table 3.1.

Table 3.1. Planetary data: ratio of the semiaxes

planet eccentricity ε b/a

Mercury 0.206 0.978552 (not a bad circle)

Venus 0.007 0.999975 (an excellent circle)

Earth 0.017 0.999855

Mars 0.093 0.995666

Jupiter 0.048 0.998847

Saturn 0.056 0.998431

Uranus 0.046 0.998941

Neptune 0.009 0.999959

Pluto 0.249 0.968503
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The assumption of a circular orbit is quite acceptable, with the possible
exception of Mercury and Pluto, even though it is not too incorrect for these
two planets either. The situation concerning the orbits can for instance be
illustrated by the example of the earth: if the semi-minor axis of the earth
were scaled down to 4 cm, the semi-major axis would measure 4.0006 cm.

With the assumption of circular orbits Newton’s argumentation can be
paraphrased as follows:

(i) For a uniform motion on a circle (radius R) the formula for the radial
acceleration (see (2.36), p. 45)

aR =
v2

R

can be used.
(ii) The speed v for the uniform motion is given by circumference divided by

the period (this is Kepler’s second law)

v =
2πR

T
=⇒ aR = (2π)2

R

T 2
.

(iii) The magnitude of the central force, that the sun exerts on the planet,
can be given as

F = mpaR = mp
4π2R

T 2

on the basis of the second axiom.
(iv) Use the third Kepler law (T 2 = κR3) to obtain

F = mp
4π2

κ

1
R2

.

The force, that the sun exerts on the planet, depends on the distance between
sun and planet as 1/R2 .

After Newton had found the 1/R2 – law for the force, which governs
planetary motion — with similar arguments as presented — he noticed that
the same law was also responsible for the motion of the moons around the
planets (only some of the moons were known in Newton’s times). It still took
some time until it was realised that the law is universal. The final form of
the gravitational force between two mass point m1 and m2 is (Fig. 3.8a)

F 1 on 2 = γ
m1m2

|r1 − r2|3 (r1 − r2) (3.13)

F 2 on 1 = γ
m1m2

|r1 − r2|3 (r2 − r1) . (3.14)

The third axiom F 12 = −F 21 is obviously satisfied (Fig. 3.8b). The gravita-
tional constant γ has been measured for the first time in 1798 by Cavendish.
The (approximate) value is



80 3 Dynamics I: Axioms and Conservation Laws
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Fig. 3.8. Forces

γ = 6.674 · 10−11 m3

kg s2
= 6.674 · 10−8 cm3

g s2
.

As a consequence of the ’low’ value of this constant, it is found that the
gravitational force between two masses (mass points) of a few kilogram, which
are separated by a few meters, is very modest.

The determination of the gravitational constant is also of interest for the
determination of the mass of the earth. The law of gravitation and the value
of the gravitational acceleration at the surface of the earth can be combined,
as already demonstrated, to give

ME =
gR2

e

γ
. (3.15)

All the quantities on the right hand side of this equation can be determined
experimentally.

The second fundamental force law has been discovered about 100 years
(1785) after gravitation. It is Coulomb’s law, describing the electrostatic
force between two point charges (q). The force between two point charges has
the same form as the law of gravitation

F el,1 on 2 = k
q1 q2

r3
12

(r2 − r1) . (3.16)

The masses are replaced by charges, the constant k has a different significance,
but still the 1/r2

12 – law for the dependence on the distance between the two
charges holds. Electrostatic forces satisfy the third axiom as well. A difference
with respect to gravitation is the possibility of attraction and repulsion due
to the two possible signs of the charges.

Shortly after the electric force, magnetic forces were explored more
fully. The magnetic force3 is more complicated. In a (simple) situation, in
which two point charges q1 and q2 move with constant velocities v1 and v2 ,

3 A magnetic force can be interpreted as a manifestation of an electric force from
the point of view of an observer moving past the source of the electric force
according to the special theory of relativity. The fact that the classical Galilei
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the mutual magnetic force is given by the formula (electric CGS units, see
Vol. 2)

F magn,12 =
q1 q2

c2r3
12

[v2 × (v1 × r12)]

F magn,21 =
q1 q2

c2r3
12

[v1 × (v2 × (−r12))] . (3.17)

The vector r12 = r2 − r1 stands again for the separation of the two charges

12r
12F21F

2v

1v

2q1q

Fig. 3.9. Magnetic forces between two moving charges

and c is the velocity of light. The force vectors indicated in Fig. 3.9 are
obtained, if the two charges have the same sign. Magnetic forces do not
satisfy the third axiom.

In the last century two additional fundamental forces have been added:
Today one distinguishes four fundamental interactions in nature:

• gravitation
• electromagnetic interaction

}
long

range .
• weak interaction
• strong interaction

}
short

The last two interactions characterise forces between elementary particles.
The explicit force can not be written down in the form of simple equations.
One assumes (and so far there is no experimental evidence to the contrary),
that all four interactions satisfy an extended version of the third axiom.

In order to fill these statements with some life, one has to ask the question:
what is the origin of a force? What is the mechanism, with which a mass point
m1 communicates with a mass point m2, in order to influence its motion?
The fact that the answer is not easily obtained, can be illustrated with a
’theory’ of gravitation of the 16th century, that is before the more abstract
version of Newton. This theory claimed that planets were pushed on their
orbits by angels (Fig. 3.10).

Our present understanding of forces is based on quantum field theory.
According to this theory the four fundamental interactions are mediated by
the exchange of characteristic field quanta (the gauge particles) between the
interacting partners. Interaction corresponds so to speak to the exchange of
’balls’ between two objects. It is, however, not clear how one can differentiate

transformation has to be replaced by the more involved Lorentz transformation
explains the form and properties of the magnetic forces.
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Fig. 3.10. Model of gravitation, 16th century

between repulsion and attraction with such a simplistic picture. In quantum
field theory the interactions are represented by Feynman diagrams. These
pictographs can be translated into corresponding mathematical expressions.
The simplest Feynman graphs for the fundamental interactions, which de-
scribe the exchange of exactly one gauge particle, have the form indicated
in the figure below. Two elementary particles with momenta p1 and p2 ex-
change a gauge particle. This leads to final momenta p′1 and p′2 of the two
particles. The diagram implies a time axis, which points upwards, and an
axis representing space in the horizontal.

gauge

particles

p1

p′1

p2

p′2

Up to the year 1970 the list of gauge particle had the following entries:

• Gravitons, photons, hypothetical intermediate vector bosons and a number
of mesons

mediated (in the same order)

• gravitation, electromagnetism, the weak and the strong interaction.

Gravitation acts between all particles, the weak interaction between all ele-
mentary particles, photons are exchanged between charged particles and the
strong interaction is only effective between baryons, as neutron or proton.
The third axiom is valid for these interactions but in a different form. For
each elementary process (characterised by a ’vertex’, the dot in the Feynman
diagram, where the gauge particles are emitted or absorbed) momentum con-
servation is satisfied in the form

pin = pout + pgaugeparticle .

The momenta of the particles, coming into or leaving the interaction point,
and of the gauge particle have to be matched. This statement is, in partic-
ular, valid for the electromagnetic interaction. One may therefore infer that
the validity of momentum conservation corresponds to the validity of the
extended form of the third axiom (see Chap. 3.2.1).
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The statements concerning the gauge particles which had been accepted
until 1970, have been revised in the meantime. There is no new information
on the (still hypothetical) gravitons. The electromagnetic and the weak in-
teractions have been unified. The gauge particles are either a neutral particle
(a mixture of photon and the neutral vector boson which has been called Z0)
or a vector boson, with either a positive or a negative charge. The picture
concerning the strong interaction has changed completely. The former me-
son exchange theory has been replaced by quantum chromodynamics. The
fundamental particles which interact, are the quarks, the ’balls’ are the glu-
ons. The particles, which beforehand were classified as interacting strongly,
are composite particles. Mesons are composed of a quark-antiquark pair,
baryons contain three quarks. The force that was originally considered to be
the strong force is only a weak emanation of the strong interaction inside the
hadrons.

It remains to be seen whether our conception about the nature of the
fundamental forces will sound as naive in 500 years as the story about the
angels pushing planets.

After this comment on the three axioms one should ask the question about
their practical benefit. The answer will be given in the form of two comments:

1. The solution of the central equation of motion for given forces. In the
case of one mass point the following set of differential equations has to
be discussed

mẍ = Fx(t, x, y, z, ẋ, ẏ, ż)
mÿ = Fy(t, x, y, z, ẋ, ẏ, ż)
mz̈ = Fz(t, x, y, z, ẋ, ẏ, ż) ,

in vectorial summary

mr̈ = F (t, r, ṙ) . (3.18)

The right hand side (three functions, each depending in the general case
on 7 variables) is specified. The task is the determination of the func-
tion r(t). Some simple examples have already been discussed in Chap. 2.
More sophisticated examples will be found in the chapters starting with
Chap. 4.

2. It is on the other hand also useful to pose the question: Can general
statements for mechanical systems without reference to specific forces or
situations be obtained? The answer to this question are the conservation
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laws (for momentum, angular momentum and energy). The conservation
laws, as discussed in mechanics, are considered to be a consequence of the
axioms (and general statements on the nature of the forces). The con-
servation laws are, on the other hand, more accessible than the axioms
from an experimental point of view. For this reason it is quite sensible to
base the system of physics on an axiomatic foundation using the conser-
vation laws. This approach is in so far more adequate as the conservation
laws are valid in the world of quantum mechanics. The second axiom, by
contrast, is not.

The explicit application of the axioms begins with the discussion of the
conservation laws.

3.2 The conservation laws of mechanics

Conservation laws are general statements concerning systems of mass points,
which are subjected to external influences (the standard term is ’external
forces’) and which interact with each other (internal forces). Momentum
conservation is the most transparent of the three basic conservation laws of
mechanics. It is therefore opportune to start the discussion with this subject.

3.2.1 The momentum principle and momentum conservation

The simplest ’system’ that can be considered is a system of two point parti-
cles.

3.2.1.1 Systems with two point particles. The centre of gravity (centre
of mass) should be used as point of reference for a vectorial description of
this system. The position of the centre of mass with respect to an arbitrary
coordinate system is defined by (Fig. 3.11)

R(t) =
1
M

(m1r1(t) + m2r2(t)) M = m1 + m2 . (3.19)

R

2m

1m

2r (t)

1r (t)

Fig. 3.11. Definition of the centre of mass of two point
particles

M is the total mass of the system of mass points. The centre of mass lies on
the line connecting the two masses and divides this line in the ratio of the
two masses
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R − r1 =
m1r1 + m2r2

M
− m1 + m2

M
r1 =

m2

M
(r2 − r1)

R − r2 =
m1r1 + m2r2

M
− m1 + m2

M
r2 =

m1

M
(r1 − r2) .

The time derivative of the vector R is the velocity of the centre of mass

V = Ṙ =
1
M

(m1ṙ1 + m2ṙ2) . (3.20)

The momentum of the centre of mass is therefore, according to the general
definition mass times velocity

P = MV = m1ṙ1 + m2ṙ2 = p1 + p2 . (3.21)

The momentum of the centre of mass is identical with the total momentum
of the system.

The system is referred to as an (ideal) closed system, if the two masses
are isolated from external influences. No external forces (usually denoted by
a capital letter F ) act on the masses

F 1 = F 2 = 0 .

The masses move solely under the influence of their mutual interaction, the
internal forces (denoted by a lower case letter f). These are assumed to satisfy
the third law

f12 + f21 = 0 .

The vectorial equation of motion for the two mass points

dp1

dt
= f21

d,p2

dt
= f12

can be added to give

d
dt

P (t) =
d
dt

(p1 + p2) = f21 + f12 = 0 . (3.22)

On the basis of the assumption, that the third axiom is valid for the internal
forces, the second axiom leads to the result: the time derivative of the total
momentum equals zero for a closed system of (two) point particles. A direct
consequence of this result is the statement

P (t) = P (t0) respectively R(t) = R(t0) + V (t0) t . (3.23)

The total momentum has the same value for each instant of time. The centre
of mass (CM) is, depending on the initial conditions, at rest or in uniform
motion. This fact is independent of the motion of the two masses under the
influence of the internal forces (see Fig. 3.12a). These statements are equiv-
alent forms of the principle of momentum as expressed by (3.22) or the
law of momentum conservation of the system of two particles expressed
explicitly by (3.23).
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(a) (b)

CM

2t

1t

relative motion

2m

21f

12f

1m

21f
12f

internal forces

Fig. 3.12. Momentum principle

One point has to be emphasised: for the application of the third axiom,
which has been used to establish momentum conservation, only the property
that the internal forces are antiparallel and equally strong, is required. It is
not necessary that the force vectors are directed along the line connecting
the two masses (Fig. 3.12b).

The two mass system is called an open system if external forces (F 1, F 2)
act in addition to the internal forces on the two masses. The equation of
motion for the two masses are then

d
dt

(p1) = F 1 + f21
d
dt

(p2) = F 2 + f12 .

If the internal forces satisfy the third axiom, the sum of the two equations of
motion yields

d
dt

P = F 1 + F 2 = F . (3.24)

This statement can be interpreted in the following fashion: The system of
two masses behaves as if the total mass was concentrated in the centre of
gravity. The vector sum of the external forces (the total external force) acts
on the centre of gravity and determines its motion. The statement (3.24) is
also referred to as the principle of momentum. The momentum principle is
identical with momentum conservation for the system, if the total external
force vanishes for all times F (t) = 0 .

3.2.1.2 Examples for the momentum principle and momentum con-
servation. It is possible to make partial statements on problems of motion
with the aid of the conservation law for the total momentum without a knowl-
edge or the specification of the internal forces. Here are two simple examples
to illustrate this point.

• A spring (Fig. 3.13) is compressed between the masses m1 and m2 . The
spring is supposed to simulate a mutual interaction, which satisfies the
third axiom. At time t = 0 the velocities v1 and v2 are equal to zero
v1(0) = v2(0) = 0 and thus P (0) = 0 . After the spring has been released,
the two masses move (after an initial phase of acceleration) with constant
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2m1m

2v1v

t = 0 t ≥ 0

Fig. 3.13. ’Experiment’ relating to momentum conservation

velocity in opposite directions. According to the conservation law, the state-
ment

m1v1 + m2v2 = 0

is valid for all later times. For instance, v2 can be calculated if the two
masses and v1 are known. If one of the masses and the two velocities are
measured, the second mass can be determined, etc. The detailed forces
exerted by the spring need not be known, as long as it is assured, that the
spring acts on each of the masses with the same strength and in opposite
direction. Variants of this simple method are used to determine the masses
of elementary particles via the analysis of collision processes.

• The second example is the (simplified) ballistic pendulum (Fig. 3.14). A
mass m2 moving with velocity v2 hits a larger mass m1, originally at rest.
After the mass m2 is embedded in mass m1 the total system moves with
velocity v . It is certainly difficult to analyse the action of the forces during
the impact. As long as it can be assumed that they satisfy the third axiom
(they are atomic, that is electrostatic forces), one can state

m2v2 = (m1 + m2)v .

If the masses and the final velocity v is determined, the initial velocity v2

of the mass m2 can be calculated with this simple relation ( Probl. 3.8).

1m
v

2m

1v  = 02v
Fig. 3.14. Momentum con-
servation: ballistic pendulum

• The following example illustrates the application of the momentum princi-
ple. A projectile moves, under the influence of gravity, on a parabolic tra-
jectory (Fig. 3.15). At time t0 it explodes, separating into two fragments.
The two fragments represent the system before and after the time t0 . The
forces between them are internal forces, the gravitation due to the earth
is an external force. Before the time t0 (t ≤ t0) the two segments move
together according to the equation of motion

d
dt

[
(m1 + m2)V

]
= (m1 + m2)g −→ d

dt
P = Mg .
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2m

1m
m

0t

Fig. 3.15. Projectile motion, experiment
in an open system

The internal forces must balance so that the two pieces do not separate.
The explosion delivers an impulse of force of short duration to each of the
parts. After a phase of acceleration (for t > t0) the following equations of
motion are valid

d
dt

(m1v1) = m1g + f21
d
dt

(m2v2) = m2g + f12 . (3.25)

There exist now internal forces between the fragments which are assumed
to obey the third law. The initial conditions for the motion of the two frag-
ments are determined by the properties of the impulse of force. For times
after the explosion the situation can be characterised by the statements:
1. The centre of gravity satisfies the same equation of motion as before the
explosion. With the initial conditions for the centre of gravity at t0 the
motion continues on the parabolic orbit

d
dt

(P ) = Mg P = m1v1 + m2v2 = MV . (3.26)

2. It is useful to employ a centre of mass system for the discussion of
the motion of the fragments. The origin of this coordinate system is at
all times the centre of gravity. As the centre of mass is accelerated in the

 ’ 
 2  r

 2  r

 R

 ’ S
S

Fig. 3.16. Relation between the laboratory system S and
the centre of mass system S’

present example, the centre of mass system is not an inertial system. The
position of the two masses with respect to the centre of gravity (r′) are
(see Fig. 3.16)

r1 = R + r′
1 r2 = R + r′

2 ,

the corresponding velocities

v1 = V + v′
1 v2 = V + v′

2 .
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The left hand side of the first of the equations of motion (3.25) yields

d
dt

(m1v1) =
d
dt

m1(V + v′
1) =

m1

M

d
dt

(P ) +
d
dt

(m1v
′
1)

= m1g +
d
dt

(m1v
′
1) ,

if the velocity transformation for the first mass is inserted and the momen-
tum principle (3.26) is used.
Comparison with the right hand side of the equation of motion leads to

d
dt

(m1v
′
1) = f21 .

A corresponding statement

d
dt

(m2v
′
2) = f12

is obtained for the second mass. These equations indicate that the motion
of the two fragments with respect to the centre of mass is governed solely
by internal forces.

3.2.1.3 Systems of N point particles. The extension of the discussion
to the general case, a system of N point particles m1, m2, m3 , . . . , mN , is
not difficult. The mass points can move freely as e.g. the sun, planets, moons
and asteroids in our planetary system or the approximately 1024 molecules in
a volume of gas. The mass points can also have fixed positions with respect
to each other. Such a system is referred to as a solid or a rigid body. A
body is called (ideally) rigid as long as it does not change its shape under
the influence of external forces. The internal forces in a rigid body have
to balance completely (Coulomb forces augmented by some refinements act
within a molecule or a crystal) as the mass points would otherwise move with
respect to each other on a macroscopic scale. The degree of rigidity of a body
depends on its reaction towards additional external forces.

For a system of mass points (whether it is rigid, deformable or consists of
freely moving point particles) the following definitions are used:

Total mass:

M =
N∑

i=1

mi = m1 + m2 + . . . + mN . (3.27)

Position of the centre of mass:

R =
1
M

∑
i

miri . (3.28)

Velocity of the centre of mass:

V = Ṙ =
1
M

∑
i

mivi . (3.29)
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Total momentum (momentum of the centre of mass):

P = MV =
∑

i

mivi =
∑

i

pi . (3.30)

Position of a mass point with respect to the centre of mass:

r′
i = ri − R . (3.31)

The equation of motion of the k -th mass point is
dpk

dt
= F k + f1k + f2k + . . . + fNk

= F k +
N∑

i=1
i�=k

f i,k . (3.32)

Besides the external force Fk there are (N − 1) internal forces due to the
other masses that act on the k -th mass point. With the understanding

fkk = 0 (k = 1 . . . N)

in conformity with the third axiom

f ik = −fki

for i = k , the sum in (3.32) can be taken to run from 1 to N

N∑
i=1
i�=k

−→
N∑

i=1

.

Addition of the vectorial equations of motion (3.32) for all masses gives
N∑

k=1

dpk

dt
=

N∑
k=1

F k +
N∑

k=1

N∑
i=1

f ik .

The time derivative of the total momentum can be recognised on the left
hand side

N∑
k=1

dpk

dt
=

d
dt

N∑
k=1

(pk) =
d
dt

P (t) .

The first term on the right side is the sum of all external forces

F ext =
∑

k

F k .

The double sum on the right hand side vanishes, if the internal forces satisfy
the third axiom, as one finds∑

ik

f ik = −∑
ik

fki (with the third axiom)

= −∑
ik

f ik (renaming the indices) ,
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as only the null vector can be equal to its negative. This statement demon-
strates that only external forces contribute on the right hand side. The re-
sulting relation

Ṗ =
∑

k F k = F ext (3.33)

is the momentum principle for an arbitrary system of mass points with in-
ternal forces which satisfy the third axiom:

The time change of the total momentum of a system of mass
points, for which the internal forces satisfy the third axiom, is
determined by the sum of the external forces.

An alternative formulation is:

The centre of gravity of a system of mass points, with internal
forces which satisfy the third law, moves as if the total mass was
concentrated in the centre of gravity and as if the sum of the
external forces acts on it.

Momentum is conserved if the sum of the external forces vanishes for
all times∑

k

F k = 0 −→ Ṗ = 0 −→ P (t) = P (t0) . (3.34)

Momentum conservation applies in particular to a closed system, for which
no external forces are present (F k = 0 (k = 1, 2, . . .)) . This is usually ex-
pressed briefly as

The centre of gravity is at rest or in uniform motion in a closed
system.

The momentum principle is a very useful instrument for the discussion
of mechanical systems. It is, however, often applied in connection with the
energy principle (see Chap. 3.2.3ff). For this reason no additional examples
will be presented at this point.

The moment of the momentum is the angular momentum. A conservation
law can also be stated for this dynamical quantity, if appropriate conditions
apply. The discussion of this quantity is slightly more involved, as the con-
struction of a moment involves a cross product of vectors.

3.2.2 The angular momentum principle and angular momentum
conservation

A quantity of the form r×vector is the moment of a vector. The angular
momentum is the moment of the momentum. Its properties can therefore
be extracted from the equation of motion. The simplest case is the angular
momentum of a single mass point.
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3.2.2.1 Angular momentum of a mass point. Consider a mass point,
which moves on a given trajectory. Its (orbital) angular momentum is
defined as the vector product of the radius vector with the momentum vector
(Fig. 3.17a)

(a) (b)

v(t)r(t)

basic quantities

γ

pr

construction of the moment

Fig. 3.17. Definition of the angular momentum of a point particle

l(t) = m[r(t) × v(t)] = r(t) × p(t) . (3.35)

The angular momentum is, up to a simple factor, identical with the areal
velocity, which has been introduced in Chap. 2.3.3

Ȧ(t) =
1
2
(r(t) × v(t)) l(t) = 2mȦ(t) .

The previous discussion of the areal velocity can therefore be complemented
by a more direct approach to the dynamical aspects involved.

The magnitude of the angular momentum vector is

|l| = rp| sin γ| = rp| cos(π/2 − γ)| ,
where the angle γ is the angle between the vectors r and p . It corresponds
therefore, as indicated in Fig. 3.17b, to the projection of the momentum vec-
tor on a direction perpendicular to the radius vector r . It is a measure of the
instantaneous rotation about the origin of a chosen coordinate system. This
measure is proportional to the distance of the point particle from the origin.
The direction of the angular momentum vector describes the sense of the in-
stantaneous rotation (according to the right hand rule, see Math.Chap. 3.1.1).
For the situation depicted in Fig. 3.18a the vector points out of the page, for
the situation of Fig. 3.18b into the page4.

The equation for the change of the angular momentum with time can be
obtained by taking the moment of the equation of motion for the mass point

d
dt

p = F −→ r × ṗ = r × F .

The left hand side equals the time derivative of the angular momentum as
4 The end point of the vector is indicated by the ’tip’ of the arrow (�), the starting

point by the ’base’ of the arrow (⊗).
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(a) (b)

 p

 r

 p

 r

Fig. 3.18. Direction of the angular momentum vector

l̇ = (ṙ × p) + (r × ṗ) = (r × ṗ) .

The first term vanishes because of (ṙ × p) = m(ṙ × ṙ) = 0 . The right hand
side features the moment of force or torque

M = r × F |M | = rF sin θr,F . (3.36)

The torque is responsible for a change of the angular momentum with time.
The factor r, the distance between the point of reference and the point where
the force is applied, is the arm of the force. The effect of a force on the
rotational motion is larger for a larger arm. This statement is verified in
everyday life: in order to open a door, one would apply the force as far
removed from the hinges and not close to them (Fig. 3.19).

torque large torque small

Fig. 3.19. Illustration of the torque

The equation determining the time dependence of the angular momentum
is sometimes referred to as the principle of angular momentum

d
dt

l(t) = M(t) . (3.37)

Angular momentum is conserved, if the torque vanishes for all times

M = 0 −→ l̇ = 0 −→ l(t) = l(t0) . (3.38)

This implies that the angular momentum is conserved if

1. no force (uniform motion on a straight line),
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2. or a central force

is applied (compare the discussion of the law of areas in Chap. 2.3).
Both the torque and the angular momentum have the form r × vector.

For this reason they depend on the choice of a common point of reference.
The conservation law is only valid, if the vector M(t) vanishes for all times
in a chosen coordinate system.

This statement can be illustrated by two examples: the uniform motion
along a straight line and a uniform circular motion. The uniform motion along
a straight line is characterised by the statement r(t) = r0 + v0t , so that the
relation

l = m(r(t) × v0) = m(r0 × v0) = const.

follows. The constant (in time) angular momentum vector points into the
page for the situation indicated in Fig. 3.20a . The motion of a mass point
along a straight line might not necessarily be associated with a rotation. A
second glance at the figure demonstrates, however, that this motion is indeed
a rotation about the origin, be it only by an angle of 180◦.

The motion could also be viewed from a coordinate system S’, for which
the origin is a point of the straight line (Fig. 3.20b). The position of the point
particle

r′(t) = r′
0 + v0t

with

r′
0 = Cv0

leads to

l′ = m(r′(t) × v0) = m(C + t)(v0 × v0) = 0

in this case. A radial motion is observed in the system S′ rather than a
rotation about the origin.

(a) (b)

 0 v

 0 r

 r(t)

point of view of system S

 0 r

 ’ S S

 ’
 0 r

 r(t)

point of view of system S’

Fig. 3.20. Angular momentum for the motion along a straight line

A similar result can be obtained for the example of uniform circular mo-
tion. The equations (Chap. 2.4.1)
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r = Rer v = Rωeϕ

lead to

l = mR2ωez = const.

if the origin of the coordinate system is the centre of the circle (Fig. 3.21a).
On the other hand, the coordinates and the velocity components of the point

(a) (b)

 v
 r

 S

viewed from the centre

 ’ r v

 ’ S

viewed from the circumference

Fig. 3.21. Angular momentum for circular motion

particle are given by

x′=x − R = R(cosωt − 1) y′ = R sinωt

ẋ′=−Rω sinωt ẏ′ = Rω cosωt ,

if the rotation is described from the point of view of a coordinate system with
the origin on the circumference of the circle (e.g. on the x - axis, Fig. 3.21b).
The magnitude of the angular momentum

 | l ’ |

 2 π3   /2 π π  /2 π
 t ω

Fig. 3.22. Time variation of the angular
momentum if viewed from the circumfer-
ence

l′ = m(x′ẏ′ − y′ẋ′)ez = mR2ω(1 − cosωt)ez

changes with time (see Fig. 3.22) from the point of view of this coordinate
system.

The angular momentum of a mass point (object) is only defined com-
pletely, if the position of the starting point of the vector r(t) is specified (and
independent of time).
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3.2.2.2 The angular momentum for systems of N mass points. The
discussion of the angular momentum of one mass point has to be generalised
to the case of a system of mass points. The consideration of moments neces-
sitates a slightly more involved argument. All N mass points of the system
have to be characterised from the point of view of one particular system of
reference. The angular momentum of the k -th particle is (Fig. 3.23a)

(a) (b)

 k p

 k r
 kl

angular momentum of one particle

 ’
 k r

 R

 k r

centre of mass coordinates

Fig. 3.23. Angular momentum in a system of point particles

lk(t) = rk(t) × pk(t) .

The total angular momentum of the system is defined as the vectorial sum
of all individual angular momenta

L(t) =
N∑

k=1

lk(t) =
N∑

k=1

rk(t) × pk(t) . (3.39)

The fact that angular momentum differs from the linear momentum is demon-
strated by the following argument. The centre of gravity can be brought into
play by (Fig. 3.23b)

rk = r′
k + R vk = v′

k + V .

Insertion into (3.39) yields

L =
∑

k

mk[(R + r′
k) × (V + v′

k)]

=
∑

k

mk

[
(R × V ) + (R × v′

k) + (r′
k × V ) + (r′

k × v′
k)
]
.

The replacement
∑

k mk = M can be used in the first term. This term
corresponds to the angular momentum of the centre of mass with respect to
a chosen coordinate system

LCM = R × P .

The third term vanishes for the transformation to the centre of mass system∑
k

mkr′
k =

∑
(mkrk − mkR) = MR − MR = 0 .
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This argument can also be applied to the second term∑
k

mkv′
k =

d
dt

∑
k

mkr′
k = 0 .

The last term is the sum of the individual angular momenta referred to the
centre of mass∑

k

l′k =
∑

k

mk(r′
k × v′

k) .

The total angular momentum of a system of N mass points can therefore be
decomposed in the following fashion

L = (R × P ) +
∑

k

(r′
k × p′

k)

or (3.40)

L(t) = LCM(t) +
∑

k

l′k(t) .

The total angular momentum of the system is equal to the angular momentum
of the centre of mass (referred to a chosen coordinate system) plus the sum
of the angular momenta of the individual mass points referred to the centre
of mass.

The time derivative of the total angular momentum

L̇(t) =
∑

k

l̇k(t)

has to be analysed next. The time derivative of the individual angular mo-
menta is

l̇k = rk × ṗk .

The equation of motion (3.32) for the time derivative of the linear momenta
gives for L̇

L̇(t) =
∑

k

(rk × F k) +
∑
ik

(rk × f ik) . (3.41)

The second term on the right hand side vanishes, if the internal forces f ik

satisfy the third axiom and if they are oriented along the lines connecting the
relevant pairs of mass points.

This statement can be verified by first renaming the summation indices∑
ik

(rk × f ik) =
∑
ik

(ri × fki) ,

so that the relation∑
ik

(rk × f ik) =
1
2

∑
ik

{(rk × f ik) + (ri × fki)}
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follows. For forces satisfying the third axiom, this contribution to the time
derivative of the total angular momentum can be written as∑

ik

(rk × f ik) =
1
2

∑
ik

[(rk − ri) × f ik] .

This expression does not vanish in general. It vanishes, however, if the internal
forces have the form of scalar functions of the position vectors involved times
the vectorial distance of the two masses

f ik = fik(ri, rk) (rk − ri) .

This requirement concerning the internal forces goes beyond the requirement
that led to the momentum principle. It is satisfied for gravitation and elec-
trostatic forces.

The first term on the right hand side of (3.41) is the sum of torques of
the external forces. This quantity is the total torque

M =
∑

k

(rk × F k) =
∑

k

Mk . (3.42)

The total torque can be decomposed in the same way as the total angular
momentum. The transformation to the centre of mass

rk = R + r′
k

leads to the decomposition

M =
∑

k

{
(R × F k) + (r′

k × F k)
}

= (R × F ) +
∑

k

(r′
k × F k)

= MCM + M ′
ext . (3.43)

The total torque is the sum of the torque of the centre of mass and the torque
of the external forces with respect to the centre of mass system.
The discussion can be summarized in the angular momentum principle for a
system of N mass points

If the internal forces of the system satisfy the third axiom and
if they are directed along the line joining relevant pairs of mass
points, then the time derivative if the total angular momentum
equals the sum of the moments of the external forces

L̇(t) = M(t) or
∑

k

l̇k =
∑

k

(rk × F k) . (3.44)

The decomposition with respect to the centre of mass

L = (R × P ) +
∑

k

(r′
k × p′

k) and M = (R × F ) +
∑

k

(r′
k × F k)
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is often useful.
Angular momentum conservation of the system is found if the total

torque vanishes (e.g. for a closed system with F k = 0 for all k)

M(t) = 0 −→ L̇(t) = 0 −→ L(t) = L(t0) . (3.45)

One additional point should, finally, be emphasised: The angular momentum
principle is (as the momentum principle) a vectorial statement. Each vector
equation is a summary of three scalar equations.

3.2.2.3 Examples for the application of the angular momentum
principle. Angular momentum plays a central role in the discussion of the
motion of rigid bodies (Chap. 6.3). For this reason only a few additional
examples will be discussed here.
The first remark addresses the mechanism of the lever, which has been used
since antiquity (it is said to have been discovered by Archimedes). A lever
is a primitive machine, which consists of a bar, that can revolve about a
perpendicular axis. An equilibrium condition can be realised, if two constant

(a) (b)

 1M
 2r  1r

 2 2  1MF F

rotation about an axis

 1M

 2M

 1F
 2F

general situation

Fig. 3.24. Lever principle

forces (F 1 and F 2) with the arms r1 and r2 (Fig. 3.24a) are applied in a
plane perpendicular to the axis of rotation so that

M1 + M2 = (r1 × F 1) + (r2 × F 2) = 0 . (3.46)

The sum of the torques with respect to the axis of rotation vanishes for an
equilibrium situation. If the two force vectors are not in a plane perpendicular
to the axis of rotation (Fig. 3.24b, D.tail 3.1) part of the action of the
moment has to be compensated by the bearing. Otherwise the whole machine
will move. A direct application of the lever is illustrated in Fig. 3.25. In order
to lift an object of mass M without any additional aid, a force −Mg is
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 -Mg M
Fig. 3.25. Lever application

required. With a lever it is possible to use a much smaller force (in principle
an arbitrary small force for a very long arm).

The dumb-bell is an example of a simple rigid body. It consists of two
masses m1 and m2, which are connected by a rigid, weightless rod. The
dumb-bell is supposed to rotate about an axis, which is perpendicular to

(a) (b)

 l

 ω

 2 r  2 m

 1 r
 1 m

illustration of the variables

 2 F

 1 F

 2 r
 1 r

 β

 2 m

 1 m
 CM

a couple of forces

Fig. 3.26. Motion of a dumb-bell

the connecting rod and which passes through the centre of mass (CM) of
the system (Fig. 3.26a). The total angular momentum of the dumb-bell with
respect to the centre of mass is obtained by considering the equations for
the motion of the two masses. The relevant statements for the first mass in
suitable cylindrical coordinates, referred to the centre of mass, are (Fig. 3.26b)

r1(t) = r1er1

v1(t) = r1ω(t)eϕ1 (ṙ1 = 0) .

The distance of the mass m1 from the centre of mass is r1 (use centre of mass
coordinates without a prime, in contrast to Chap. 3.2.2.2) and ω(t) is the
angular velocity. The angular momentum of m1 is then

l1(t) = r1(t) × p1(t) = m1r
2
1ω(t)ez .

The angular velocity can be characterised by a vector, which marks the in-
stantaneous axis of rotation. In the present situation this vector has the form
ω(t) = ω(t)ez . A similar result can be obtained for the second mass m2

l2(t) = r2(t) × p2(t) = m2r
2
2ω(t) .

The total angular momentum of the system is therefore

L(t) = l1(t) + l2(t) = (m1r
2
1 + m2r

2
2)ω(t) . (3.47)

The factor in front of the angular velocity is the moment of inertia of the
dumb-bell
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I = (m1r
2
1 + m2r

2
2) . (3.48)

The moment of inertia is (as the angular momentum) defined with respect to
a chosen coordinate system, in the present case with respect to the centre of
mass system. The relation between angular momentum and angular velocity
is

L(t) = Iω(t)

in the present example. The general form of this relation will be discussed in
Chap. 6.3.3 in connection with the motion of rigid bodies.

The similarity of this relation with the definition of linear momentum
p = mv invites the remark: the moment of inertia characterises the resis-

tance of a rigid body against changes of the rotational motion. The impor-
tance of the contribution of the arms ri towards the size of the moment of
inertia is emphasised by the quadratic dependence on the arms.

The rotation of the dumb-bell is determined by the equation

L̇(t) = Iω̇(t) = M(t) .

The time derivative of the angular velocity is the angular acceleration (often
denoted by ω̇ = α).

The centre of mass of the dumb-bell will not move (or move uniformly) if
a couple of forces (see Fig. 3.26b) is applied to the masses. The two forces
F 1(t) and F 2(t) of the couple must be equally strong and antiparallel while
including the same angle with respect to the connecting rod of the dumb-bell
at all times, so that Ṗ = F 1(t)+F 2(t) = F (t) = 0 . The torque of the couple
of forces is

M(t) =
∑

k

(rk × F k(t)) .

The motion is uniform if no torque is applied. Otherwise the angular motion
is accelerated.

The last remark on the subject of angular momentum is a simple illustra-
tion of the use of angular momentum conservation. A dumb-bell with equal
masses m1 = m2 = m is assumed to rotate uniformly (with constant angular
velocity) about an axis through the centre of mass, which is perpendicular
to the axis of the dumb-bell (Fig. 3.27). The masses can be moved on the

 m m

Fig. 3.27. Mechanism of the pirouette

fictitious rod by a mechanism which imitates internal forces (that is in the
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direction of the centre of mass). As no external forces are applied, angular
momentum is conserved

L(t) = L(0) .

With (3.47) this implies in detail

[2mr(t)2]ω(t) = [2mr(0)2]ω(0) .

The angular velocity changes according to

ω(t) =
I(0)
I(t)

ω(0) ,

if the moment of inertia changes with time. If the masses are pulled inwards,
the moment of inertia is decreased. The dumb-bell rotates faster. This illus-
trates the mechanism of a pirouette.

The third dynamical quantity, the energy, is a central concept of physics.
It plays a role in all fields of physics and not only in mechanics. The discussion
of this concept and of the related concept of work is one of the main tasks of
theoretical mechanics.

3.2.3 Energy and energy conservation for a mass point

The discussion of energy and work relies on the concept of a field (see also
Math.Chap. 5.1), in particular a field of force. It is, for this reason, useful to
introduce this concept first.

3.2.3.1 Vector fields. An example of a vector field, the gravitational force
field, can be visualised in the following fashion: place a mass point M at the
origin of a coordinate system. Examine the whole space with a ’test mass’
which experiences the gravitational force (see (3.13), p. 79)

F (r) = −γ
mM

r3
r .

Attach (at least in thought) at each point of space (Fig. 3.28a) a vector F (r)
representing the gravitational force. All vectors on the surface of a sphere
have the same length and are directed towards the origin (where the mass M
remains). The larger the radius of the sphere, the shorter are the vectors.
This association of vectors with the points of space is called a vector field
(Fig. 3.28b), in the present case the gravitational force field

F (r) =
(
Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)

)
. (3.49)

A stationary (that is independent of time) vector field is described by three
functions of three variables, for the example under discussion explicitly

F (r) = −γ
mM

r3
(x, y, z) r = [x2 + y2 + z2]1/2 . (3.50)
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(a) (b)

 r

 F

 m

 M

vector of the force

 F 

 M 

vector field

Fig. 3.28. Illustration of the gravitational field of force

The situation discussed can be characterised in a different fashion. The
quantity

G(r) =
1
m

F (r) = −γ
M

r3
r (3.51)

is also a vector field, which is called the gravitational field of the mass
M . With the introduction of this field, a model for the action of the forces
between the two masses m and M is suggested (Fig. 3.29): start with empty
space. By placing the mass M at the position (0, 0, 0) the space is ’modified’.
The presence of the mass M establishes the gravitational field G. In the last
step a (test) mass m is positioned at a point r . The mass m is then subjected
to the force F = mG . The action of the force involves therefore

• the postulate of the existence of a gravitational field G,
• the exploration of this field with a test mass in order to observe the force F .

The obvious question ’Does the field G exist?’ cannot be answered. The field
can only be experienced in experiments via the force F . However, the model
of a gravitational field (and a good number of other fields) has turned out to
be extremely useful.

the space

 G(r)

 M

the gravitational field

 F

 m

 M

the force

Fig. 3.29. Concerning the gravitational field

A representation of a vector field in terms of field lines can be used instead
of the characterisation by arrows attached to space points. The field lines
correspond to lines, which are tangent to the field vectors. The representation
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of fields via field lines will be taken up in connection with electrostatic fields
in Vol. 2.

An example different from a central field is the uniform gravitational force
field in the vicinity of the (flat) surface of the earth

F = (0, 0, −mg) .

The corresponding gravitational field is

G = (0, 0, −g) .

3.2.3.2 The concepts of work and kinetic energy of a mass point.
It is expedient to introduce the concepts of work and kinetic energy for one
mass point in four stages. The mass point moves

• along a straight line in a constant force field F = (F, 0, 0) in the direction
of the field,

• along a straight line in the x - direction in a constant force field

F = (F cosα, 0, F sinα)

which includes an angle α with respect to the direction of motion,
• along a straight line in a variable force field F (x) = (F (x), 0, 0) in the

direction of the field,
• in a general field of force F (r) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)) .

The motion of a mass point m is, in the case F = (F, 0, 0), a linear and
uniformly accelerated motion from a point x0 to a point x(t) . The solution of
the equation of motion F = ma with the initial conditions r(0) = (x0, 0, 0)
and v(0) = (v0, 0, 0) at time t = 0 is

v − v0 =
F

m
t x − x0 = v0t +

F

2m
t2 .

Elimination of the time variable from these equations leads to

F

m
(x − x0) = v0

(
F

m
t

)
+

1
2

(
F

m
t

)2

= v0(v − v0) +
1
2

(v − v0)2

or

F (x − x0) =
m

2
v2 − m

2
v2
0 . (3.52)

This result can be interpreted in the following fashion. The expression on the
left hand side of this equation is the acting force multiplied by the distance
the mass has moved. This quantity is called work. More precisely one should
say: It is the work which the force F supplies to the mass m by moving it
by the distance (x − x0). The right hand side describes the change of the
quantity mv2/2, which depends only on the properties of the object (mass
and velocity). This quantity is the kinetic energy of the mass point

Ekin = T =
m

2
v2 =

p2

2m
≥ 0 . (3.53)



3.2 The conservation laws of mechanics 105

The concept implies that a massive object, which moves with the speed v , has
a kinetic energy T ≥ 0 . The result (3.52) can be written in a more suggestive
manner as

T (t) = T (0) + A(0 → t) . (3.54)

A symbolic interpretation of this equation is indicated by the flow diagram
in Fig. 3.30a. At the time t = 0 the kinetic energy of the object is T (0) . By
applying the force F (in this example a constant force in the direction of the
displacement) work is done. The work supplied raises the kinetic energy of
the object by the amount A to T (t) .

The mass point would be decelerated in a force field in the opposite di-
rection F = (−F, 0, 0) . The relation (3.52) would then be written as

m

2
v2 =

m

2
v2
0 − F (x − x0) .

As the object slows down, the work done (on the object) is negative. The
situation is illustrated in Fig. 3.30b. The system, the mass point, loses kinetic
energy.

(a) (b)

 A

 T(t) T(0)

positive work

 A

 T(t) T(0)

negative work

Fig. 3.30. Work: flow diagrams

The second variant of energy supply is: the mass point is moving parallel
to the x - axis in a force field with a direction that includes an angle α with
respect to the x - axis

F = (F cosα, 0, −F sinα) .

From a practical point of view, such a situation is only possible if the object
moves (without friction) on a suitable support. The component of the force
perpendicular to the direction of motion is compensated by the pressure due
to the support (Fig. 3.31). Only the x - component of the force influences the
motion in the x - direction, so that the result is

m

2
v2 =

m

2
v2
0 + F (x − x0) cosα .

The definition of work, according to two cases considered, can be stated as:

Work equals the scalar product of the
force vector F and displacement vector r

A = F · r .
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support F

 z F

 x F

 F
Fig. 3.31. Work in a homogeneous force field, arbitrary
direction

This definition is only valid if the force field is constant and if the displacement
is along a straight line. Obviously, this definition has to be generalised. This
will be done after a few remarks concerning the simple definition.

(1) In order that work (in the sense of the definition above) is supplied to an
object, the following conditions have to be satisfied:
a) the object has to move,
b) the force applied needs to have a nonvanishing component in the

direction of the motion.
This point can be emphasised by the following example: a person is hold-
ing a stone of 20 kg with arms stretched out. Even if this person is of
the opinion that he/she works hard, no work is done on the object (the
stone) in the sense of the definition as long as the stone does not move

r = 0 −→ A = 0 .

(2) The expression for the kinetic energy (a scalar quantity) can be written
in the form of a scalar product

T =
m

2
(v · v) =

1
2m

(p · p) . (3.55)

This notation turns out to be correct in general and is e.g. useful if
curvilinear coordinates are used.

(3) The units of energy and work are

SI system: 1 Joule = 1 N m = 1
kg m2

s2

CGS system: 1 erg = 1 dyn cm = 1
g cm2

s2
.

The conversation factor is 1 Joule = 107 erg . Other energy units, which
are often used, are watt second (Ws corresponding to 1 Joule) and hence
the customary kilowatt hour (kWh corresponding to 3.6 · 106 Joule) or
electron volt (1 eV = 1.602 · 10−19 Joule).

(4) The preliminary definition of work does not apply to the uniform circular
motion of a point particle in a central field (Fig. 3.32). Neither is the
force field constant nor is the displacement along a straight line. The
situation can, however, be discussed directly. The central force, which is
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 y

 x

 ds

 F

Fig. 3.32. Work during the uniform circular motion

necessary to keep the mass on the circle, is always perpendicular to the
instantaneous displacement

F ⊥ dr dr = v dt .

It can therefore be expected that no work is done on the mass. The kinetic
energy can be calculated with the formula (2.33) for the velocity

v(t) = (−Rω sinωt, Rω cosωt, 0) ,

which corresponds to the initial condition v(0) = (0, Rω, 0) , as
m

2
v2(t) =

m

2
v2(0) =

m

2
R2ω2 .

No energy is supplied to or subtracted from the uniformly rotating mass
as the force is always perpendicular to the displacement.

The displacement along a straight line in the x - direction in a variable
force field (Fig. 3.33a)

F (r) = (F (x), 0, 0)

has to be divided into differential displacements dx′ , followed by addition of

(a) (b)

 0  F(x) F(x  )

 x’
 dx’

 t 0 t

 x 0 x

infinitesimal
displacement

x

 0 x  -

 +

x’

F

balance sheet

Fig. 3.33. Work in force field, position dependent

the infinitesimal contributions

dA = F (x′) dx′
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to the work. The total work for the displacement from a point x0 to a posi-
tion x in the limit of an arbitrarily fine division is given by the integral

A =
∫ x

x0

F (x′) dx′ .

If the force along the straight line has e.g. the behaviour indicated in
Fig. 3.33b, it will first accelerate the mass (assuming motion in the positive
x - direction), then slow it down again. The contribution to the total work is
first positive, then negative. All possible variants (including the sequence of
the limits) are taken care of by the standard definition of the integral.

The relation between the work done and the change of the kinetic energy
can be found with the equation of motion in one space dimension

m
dv

dt
= F (x) .

Multiplication with dx and integration from the initial to the final position
yields

m

∫ x

x0

v̇ dx′ =
∫ x

x0

F (x′) dx′ .

The right hand side represents the work done. The left hand side is reformu-
lated in the following fashion∫ x

x0

v̇ dx′ =

[ substitution : x′ = x(t′), dx′ = v(t′) dt′ ]

=
∫ t

t0

[
d
dt′

v(t′)
]
v(t′) dt′

[ reformulate integrand ]

=
1
2

∫ t

t0

d
dt′

[
v2(t′)

]
dt′

[ direct integration ]

=
1
2
(v2(t) − v2(t0)) .

The final result is, as before, a work-energy relation of the form

m

2
v2(t) − m

2
v2(t0) =

m

2
v2 − m

2
v2
0 = A =

∫ x

x0

F (x′) dx′ . (3.56)

The calculation of the work-energy relation for an arbitrary motion in an
arbitrary field of force (Fig. 3.34) follows the same pattern. The trajectory
of the point particle can be described by the parametric representation
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 dr

 F(r)
z

y

x Fig. 3.34. Work in a general force field

r(t) = (x(t), y(t), z(t)) with t1 ≤ t ≤ t2 ,

the (stationary) force field has the form (3.49)

F (r) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)) .

First, the parametric representation is used for a definition of an infinitesimal
displacement along the curve for a given instant of time

dr = (dx, dy, dz) = (ẋ(t)dt, ẏ(t)dt, ż(t)dt) . (3.57)

Every line element dr contributes an infinitesimal amount of work of the
form

dA = F (r) · dr . (3.58)

The total work along a section of the trajectory is again obtained by integra-
tion, in explicit notation

A =

t2∫
t1

dt
{
Fx(x(t), y(t), z(t)) ẋ(t) + Fy(x(t), y(t), z(t)) ẏ(t)

+ Fz(x(t), y(t), z(t)) ż(t)
}

. (3.59)

The corresponding short hand notation is

A =
∫ 2

1

(Fxdx + Fydy + Fzdz) (3.60)

=
∫

K12

F · dr . (3.61)

The general definition of work involves a line integral over the force field.
The actual evaluation of the line integral is based on the parametric represen-
tation (3.59). The notation implies integration along the given curve starting
at the position for the time t1 to the position for the time t2 . In (3.60) this
rule is abbreviated and in the variant (3.61) the integral is condensed with
the aid of the scalar product.

Additional information on line integrals is found in Math.Chap. 5.3.1.

The starting point for the derivation of the work-energy relation is, in
this case, the equation of motion for one mass point in three dimensions
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mv̇ = F (r) .

Consider the scalar product with dr and use of the substitution dr = v dt
on the left hand side to obtain

mv̇ · v dt = F (r) · dr .

Integration from the starting time t1 to the final time t2 then yields on the
left hand side∫ t2

t1

v̇ · v dt =
1
2

∫ t2

t1

[
d
dt

(v · v)
]

dt =
1
2
(v(t2)2 − v(t1)2) .

The right hand side of this equation corresponds to the work which the force
field supplies to the mass. The relation in question has in general the form

A =
∫ 2

1

F · dr =
m

2
v2
2 − m

2
v2
1 . (3.62)

The work supplied to the mass leads to a change of the kinetic energy.
The formulation of the energy principle for a mass point in a force field is

based on the concept of potential energy. This quantity can only be defined
provided certain conditions are met. Two examples are used to illustrate the
work-energy relation in more detail and to introduce the concept of potential
energy.

3.2.3.3 Energy conservation, potential energy and conservative sys-
tems. The situation can be analysed directly for the one dimensional har-
monic oscillator. A mass m on a spring (with spring constant k) is at rest at
the position x = 0 . The force, which is necessary to displace the mass by the
distance x , is (Fig. 3.35a)

F = −kx .

(a) (b)

k

m

x=0

x

displacement

A

0x  B x0

balance of work

Fig. 3.35. Work and the harmonic oscillator

If the mass moves under the influence of the spring from the position x0 to
the position x, the work supplied by the spring to the mass is

m
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A =
∫ x

x0

(−kx′) dx′ =
k

2
x2

0 −
k

2
x2 .

The total work equals the change of the kinetic energy

k

2
x2

0 −
k

2
x2 =

m

2
v2 − m

2
v2
0 .

The quantities with the index zero refer to the initial situation, the quantities
without an index to the final situation. This relation can e.g. be used to cal-
culate the speed of the mass |v| for each displacement if the initial conditions
are specified.

The relative orientation of force and displacement is taken care of in an
automatically. Consider, for instance (see Fig. 3.35b), a displacement from
x0 via a maximal displacement B to the position x on the opposite side of
the equilibrium position. The following amounts of work are supplied to the
mass:

x0 −→ B negative work (the spring is stretched)

B −→ 0 positive work (the spring contracts)

0 −→ x negative work (the spring is compressed) .

A different interpretation of the result can be given after the rearrange-
ment

m

2
v2 +

k

2
x2 =

m

2
v2
0 +

k

2
x2

0 . (3.63)

The term kx2
0/2 on the right hand side of this equation can be interpreted

as the energy content of the initially stretched (or compressed) spring at
time t0 . A more abstract formulation is: the mass point is endowed with the
potential energy

Epot(x0) = U0 =
k

2
x2

0 (3.64)

because of its position at the point x0 in the (one dimensional) force field.
The potential energy is the energy, which a mass point possesses because of
its position in a field of force. The left hand side of (3.63) represents the sum
of the kinetic and potential energy at time t .

The reformulation of the work-energy relation is the energy principle,
respectively the law of energy conservation for the situation discussed.
The total energy of the mass point, the sum of kinetic and potential energy
is the same for all times

E = Ekin + Epot −→ E(t) = E(t0) or
dE

dt
= 0 . (3.65)

The two points of view (work-energy relation and energy conservation)
are illustrated explicitly for the harmonic oscillator problem. The solution of
this problem with the initial conditions
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t0 = 0 x0 = B v0 = 0

is

x(t) = B cosωt v(t) = −Bω sinωt ω =

√
k

m
. (3.66)

The relation T −T0 = A expresses the fact that the kinetic energy of the mass
changes due to the action of an external agent (the spring or, more general,
a force field). As the force vector acts in part in the direction of the motion
in part against the motion, the work supplied to the mass (point particle)
oscillates in time

A =
k

2
(x2

0 − x2) =
k

2
B2(1 − cos2 ωt) =

k

2
B2 sin2 ωt .

The variation of the kinetic energy with time is the same

T − T0 =
m

2
(v2 − v2

0) =
m

2
B2ω2 sin2 ωt =

k

2
B2 sin2 ωt = A .

The relation

T + U = T0 + U0 , (3.67)

which is obtained by rearrangement, expresses the fact that the mass point
and the spring constitute a closed system. The total energy is conserved
in this system. There is, however, an exchange between these two forms of
energy (Fig. 3.36a)

T (t) =
m

2
v2 =

k

2
B2 sin2 ωt U(t) =

k

2
x2 =

k

2
B2 cos2 ωt

with time. The total energy

E = T (t) + U(t) =
k

2
B2

does not depend on time and corresponds to the energy initially stored in the
spring.

(a) (b)

 U T E

 t

 0 E

energy as function of time

 B

 0 U

 U

 T

 E

 x

energy as function of position

Fig. 3.36. Example: energy situation for the harmonic oscillator

The individual expressions for the kinetic and the potential energies can
also be discussed in terms of their dependence on the position in the force
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field. In the example, the mass has initially the potential energy U0 = U(B) .
The kinetic energy at the starting time is zero. With the change of the position
in the force field an exchange between the two forms of energy takes place.
Potential energy is changed into kinetic energy and vice versa (Fig. (3.36b)).

The work supplied by the spring depends only on the difference of the
potential energies at the initial and the final point and not on the path
connecting these points

A = U0 − U = U(x0) − U(x) . (3.68)

A relation like (3.68) characterises a conservative force field. The relation
T − T0 = A is always valid. It is derived from the equation of motion (the
second axiom) via mathematical manipulations (and the definition of the
relevant quantities).

The path independence can, for instance, be demonstrated explicitly for
the example of projectile motion (a two dimensional problem) in the gravi-
tational force field

F = (0,−mg) .

The solution of the equations of motion for the initial conditions

t1 = 0 r(0) = (0, y1) v(0) = (v1, 0)

is found to be

vx(t) = v1 x(t) = v1t vy(t) = −gt y(t) = y1 − 1
2
gt2 .

The work due to gravity during the free fall from the position r(0) to a
position r(t2) can be obtained by evaluation of the line integral (3.59)

A =
∫ t2

0

(Fxẋ + Fy ẏ) dt =
∫ t2

0

(−mg)(−gt)dt =
m

2
g2t2

2 .

With the solution of the equation of motion this can be written as

A = mg

(
1
2
gt22

)
= mg (y1 − y(t2)) = mg (y1 − y2) .

This result can also be obtained directly

A =
∫ 2

1

(Fxdx + Fydy) =
∫ y2

y1

(−mg)dy = mg (y1 − y2) .

The first calculation of the work follows the actual trajectory from the point
(0, y1) to the point (x2, y2) (Fig. 3.37a). The integral in the second case is
evaluated along the straight line from the point (0, y1) to the point (0, y2)
(Fig. 3.37b). The segment of the path from (0, y2) to (x2, y2) does not con-
tribute to the work in the present example as F · dr = 0 . Gravity does not
do any work along this section of the path. An arbitrary path from the point
(0, y1) to the point (x2, y2) (Fig. 3.37c) could also have been chosen. If this
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(a) (b) (c)

 2 x

 2 y  2 r(t  )

 r(0)

y

x

path along projectile
trajectory

 2

 2

 x

 y

y

x

simple path

 2 x

 2 y

y

x

arbitrary path

Fig. 3.37. Work in the gravitational field

path is divided into infinitesimal sections it is found that only those sections
parallel to the y - axis contribute to the line integral. The argument shows
that the same result

A =
∫

all K12

F · dr = mg(y1 − y2) = U(1) − U(2)

is obtained for all paths K12 between the starting and the end point.
The gravitational force field of this example is also conservative. It should

be noted that the difference of the potential energy between starting point
and final point, that is the difference U(1) − U(2) and not U(2) − U(1),
appears. This is is a question of convention. The standard form of the total
energy

T1 + U1 = T2 + U2 = E (3.69)

is obtained from

A = U1 − U2 = T2 − T1

only by using this convention. The law of energy conservation for one point
particle

T + U = E = const.

is in this example
m

2
v2 + mgy =

m

2
(ẋ2 + ẏ2) + mgyE = const. (3.70)

for projectile motion.
Two additional remarks are necessary to complement the discussion of

these examples.

(1) The work integral with conservative forces yields only the difference of
potential energies. It would have been possible to extract

U = mgy + const.

in the last example. Potential energy is only defined up to a constant of
integration. The constant has no physical meaning. An arbitrary value
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zero is assigned to the potential energy at the surface of the earth if the
value const. = 0 is used.

(2) The fact that work in the gravitational field G = (0, g) is independent
of the path, can be put to good use. If a mass moves under the influence
of gravitation on a slide, the calculation of the motion on the trajectory
specified by the slide should include gravitational F g as well as con-
straining forces F Z due to the slide. The constraining forces are in
general quite complicated, but they have one useful property. The force
vector is at all times perpendicular to the instantaneous displacement
(Fig. 3.38a). Constraining forces do not, for this reason, contribute to
the work. For the motion along a slide of arbitrary shape (neglecting
frictional effects) energy conservation is valid in the form

m

2
v2 + mgy =

m

2
v2
0 + mgy0 .

(a) (b)

F
 activeF

 zF

 gF

the forces

 0 v  = 0

 mg
 2R

 h=?

posing the problem

Fig. 3.38. Frictionless slide with a loop

An example for the application of energy conservation in this form is the
following problem: consider a frictionless slide with a circular loop (Fig. 3.38b)
of radius R. The question is: how far above the ground does one have to start
a mass m from rest, so that it just passes through the loop without crashing?

For an answer two ingredients are needed: the velocity at the top of the
loop can be related to the starting height h via energy conservation

m

2
v2 + mg(2R) = mgh .

In order to avoid a crash during the motion through the loop, the centrifugal
force due to the motion has to be larger than the gravitational force. The
minimal condition is equality of the two forces

m
v2

R
= mg .

If this condition is written in the form
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m

2
v2 =

1
2
mgR

and inserted into the energy law, the result

mgh =
1
2
mgR + 2mgR

or

h =
5
2
R

is obtained. If the mass sliding without friction is replaced by a rolling ball,
the rotational kinetic energy of the ball has to be included in the discussion
( Probl. 3.10).

Partial answers to relatively complicated problems of motion can be ob-
tained if energy conservation holds. A description of the actual motion (that
is tracing the position as a function of time) can only be obtained by solution
of the equations of motion including (if applicable) the constraining forces.
This is possible but a in general definitely more tedious (see Chap. 5).

The discussion of the energy situation for the motion of one point particle
has so far relied on examples. It is therefore appropriate to summarise the
discussion in more formal terms at this point.

In order to discuss energy and energy conservation in general terms, some
concepts of vector analysis are required. These are introduced and discussed in

Math.Chap. 5.

3.2.3.4 Formal statement of the law of energy conservation. A sta-
tionary conservative force field F (x, y, z) is characterised by the following
equivalent statements

• The curl or rotation of the field vanishes

rotF (x, y, z) =
(

∂Fz

∂y
− ∂Fy

∂z

)
ex +

(
∂Fx

∂z
− ∂Fz

∂x

)
ey

+
(

∂Fy

∂x
− ∂Fx

∂y

)
ez = 0 .

This expresses the fact that the field F is vortex-free.
• The line integral of a conservative force field between the points r1 and r2

I(1, 2) =
∫ 2

1

F (r′) · dr′

is independent of the path between the two points. This allows the defini-
tion of the potential energy of the force field as

U(x, y, z) = −
∫ r

F (r′) · dr′ . (3.71)

The lower limit of the line integral is arbitrary.
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• It can be represented as the gradient (the directional derivative) of a
scalar function, the potential energy

F (x, y, z) = −∇U(x, y, z) . (3.72)

The choice of the sign is a question of convention. The inverse of this
relation is the line integral (3.71).

The relation between the vanishing of the curl (or rotation) of a vector
field and the path independence of the line integral is discussed at length in

Math.Chap. 5.

Line integration of the equation for the motion of a mass point

d
dt

p = F (x, y, z)

in a conservative field of force between the points r1 and r2∫ r2

r1

d
dt

p · dr =
∫ r2

r1

F (r) · dr

yields the statement
m

2
v2
1 + U(r1) =

m

2
v2
2 + U(r2) = const.

or introducing the initial and final times
m

2
v(t1)2 + U(r(t1)) =

m

2
v(t2)2 + U(r(t2)) . (3.73)

The total energy (the sum of the kinetic and the potential energy) for the
motion of a mass point in a conservative field of force is a conserved quantity.
The manipulation of the equation of motion just described suggests that
this energy principle corresponds to the first integral of the equation of
motion.

By contrast, a general force field can depend on all variables relevant for
the motion

F = (Fx(x, y, z, ẋ, ẏ, ż, t)), Fy(. . .), Fz(. . .)) .

The evaluation of the work integral

A =
∫ t2

t1

dt
{
Fx(x(t), . . .) ẋ(t) + Fy(. . .) ẏ(t) + Fz(. . .) ż(t)

}
is only possible if a parametric representation of the path of the mass point
is specified. The result can depend on the choice of the path of integration
between the initial and final space points. If this is the case, the force field is
nonconservative. Nonconservative fields are characterised by rotF �= 0 .
Energy conservation is not valid for the motion in force fields of this type. An
example is the motion of the mass point in a nonconservative field leading to
projectile motion with friction. The x - component of the curl of the force
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F = (−kẋ, −kẏ, −kż − mg) = −kv − mg

is for example

(rot F )x =
∂

∂y
(−kż − mg) − ∂

∂z
(−kẏ) .

This expression can be evaluated with the aid of the chain rule

(rot F )x = −k

{
dż

dt

dt

dy
− dẏ

dt

dt

dz

}
= −k

{
z̈

ẏ
− ÿ

ż

}
�= 0 .

The work integral depends therefore on the path chosen and a potential
function can (in general) not be defined5.

3.2.3.5 Conservative force fields and potentials. This section contains
a list of conservative forces and the associated potentials which are often used
in texts or problems.

• The potential energy of the homogeneous gravitational field near the sur-
face of the earth

F = (0, 0, −mg)

is

U = mgz + U0 usually with U0 = 0 .

• It is easily checked that this force field of the three dimensional anisotropic
harmonic oscillator

F = (−kxx, −kyy, −kzz)

is conservative

rot F =

∣∣∣∣∣∣∣
ex ey ez

∂x ∂y ∂z

kxx kyy kzz

∣∣∣∣∣∣∣ = 0 .

The corresponding potential energy is, as indicated before,

U =
1
2
(kxx2 + kyy

2 + kzz
2) . (3.74)

This force field is not a central field. This is only the case for kx = ky = kz = k .
Energy conservation is valid for the anisotropic oscillator (with different
constants ki) but not angular momentum conservation.

• Arbitrary central fields of force with

F = f(r)
(x

r
,

y

r
,

z

r

)
= f(r)er .

5 Refer, however, to Chap. 5.3.1 for the definition of generalised potentials.
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The first factor describes the strength of the force, the second is a unit
vector in the radial direction. The strength of the force depends only on
the distance from the centre of the force (e.g. the origin)

r(x, y, z) = [x2 + y2 + z2]1/2 .

The irrotational character of the field can be checked by calculating

rotF =

∣∣∣∣∣∣∣∣
ex ey ez

∂x ∂y ∂z

x

r
f

y

r
f

z

r
f

∣∣∣∣∣∣∣∣
= ex

(
∂

∂y

(z

r
f
)
− ∂

∂z

(y

r
f
))

+ . . . .

The two partial derivatives are equal

∂

∂y

(z

r
f
)

= z

{
d
dr

(
f(r)
r

)
∂r

∂y

}
=

zy

r

d
dr

(
f(r)
r

)

∂

∂z

(y

r
f
)

= y

{
d
dr

(
f(r)
r

)
∂r

∂z

}
=

yz

r

d
dr

(
f(r)
r

)

so that (rot F )x = 0 . A corresponding result is found for the other com-
ponents.
The work integral with the central force

A =
∫ 2

1

F · dr =
∫ 2

1

f(r)
(x

r
dx +

y

r
dy +

z

r
dz
)

is easily evaluated as the expression in the brackets is the total differential
of the function r(x, y, z)

dr =
∂r

∂x
dx +

∂r

∂y
dy +

∂r

∂z
dz =

x

r
dx +

y

r
dy +

z

r
dz .

The evaluation of the line integral reduces to a standard integration in the
radial direction (see Fig. 3.39)

A =
∫ 2

1

f(r)dr =
∫ 2′

1

f(r)dr .

 2

 2’ 

 1

Fig. 3.39. Calculation of the potential energy in a central force
field

This result indicates that the direct path of the work integral between the
points 1 and 2 is replaced by a path in radial direction between the points
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1 and 2′ (which provides the result given above) followed by a path along
the surface of a sphere from 2′ to 2 . For this section of the path the force
F is perpendicular to all infinitesimal displacements dr , so that it does
not contribute to the integral. The potential energy in a central force field
can therefore be written as

U(r) = −
∫ r

f(r′)dr′ . (3.75)

It is a function of the distance from the centre of force (in the present
case the origin). The lower limit, which is not specified, corresponds to the
constant that can be chosen freely.

Special cases are the isotropic harmonic oscillator with

F = −(kr)er U(r) =
1
2
kr2 + U0

and the gravitational force of a mass point M (fixed at the origin) on a mass
point m

F = −γ
mM

r2
er

with the potential energy

U(r) = +γmM

∫ r dr′

r′2 = −γ
mM

r
+ U0 .

The constant is normally taken to be zero, so that

U(r) = −γ
mM

r
with U(r → ∞) = 0 . (3.76)

If the force is represented by the gravitational field of the mass M

F (r) = mG(r) ,

a factorisation of the potential energy in the form

U(r) = mΦ(r) = m

[
−γ

M

r

]
(3.77)

offers itself. The quantity Φ defined in this fashion is the potential of the
gravitational field (for short the gravitational potential). The relation be-
tween the gravitational potential and the gravitational field is in general

G(r) = −∇Φ(r) , (3.78)

in particular for a central field

G(r) = −er

{
∂

∂r
Φ(r)

}
.

As the treatment of scalar functions is simpler than that of vector functions, it
is (whenever possible) preferable to use a formulation of the laws of mechanics
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in terms of scalar functions. This is one the aims of the Lagrange formulation
of mechanics (see Chap. 5.3).

A related example is the gravitational force which a homogeneous mass
distribution in the form of a sphere (radius R , total mass M) exerts on a
mass point m. The corresponding gravitational field is6

G(r) =

⎧⎪⎨
⎪⎩

−γ
M

r2
er r ≥ R

−γ
M

R3
rer r ≤ R .

The gravitational potential is therefore

Φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ r γM

r′2 dr′ = −γM

r
+ C1 r ≥ R

∫ r γM

R3
r′dr′ =

1
2

γM

R3
r2 + C2 r ≤ R .

The standard choice of the constant C1 is, as indicated above, C1 = 0 .
The second constant has to be determined by the requirement that the two
functions should be continuous on the surface of the sphere

Φinside(R) = Φoutside(R) .

This gives

C2 +
1
2

γM

R
= −γM

R
−→ C2 = −3

2
γM

R

so that the final result reads

Φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

−γM

r
r ≥ R

−γM

{
3

2R
− 1

2
r2

R3

}
r ≤ R .

(3.79)

This function is illustrated in Fig. 3.40. It consists of a section of a parabola

 (r) Φ

 1/r

 R

Fig. 3.40. The gravitational potential of a spherical ho-
mogeneous mass distribution

inside the sphere which is joined to a section of a hyperbola on the outside.
The derivative of the potential is continuous at the junction of the two curves.
6 The field is calculated in Chap. 3.2.4.1, p. 127 after the gravitational potential

between two point particles is introduced.
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The potential energy of a small mass m in the force field of the spherical mass
distribution is

U(r) = mΦ(r) .

The discussion of the energy principle for one mass point allows a precise
definition of the basic concepts involved. The real interest pertains, however,
to systems of point particles which are considered in the next section. It is
necessary in this case to address the nature of the internal as well as the
external forces explicitly.

3.2.4 Energy conservation for a system of mass points

It is again useful to begin the discussion with a system of two point particles
which experience only internal forces. The equations of motion are

m1v̇1 = f21 m2v̇2 = f12 .

Each of the forces could in general be a vector function of 13 variables

f12 = f(r1, v1; r2, v2; t) f21 = g(r2, v2; r1, v1; t) .

The following restrictions can, however, be applied:

(1) The third axiom demands

f12 = −f21 =⇒ f(r1, v1; r2, v2; t) = −g(r2, v2; r1, v1; t)

or in abbreviation

f12 = −f21 =⇒ f(1, 2, t) = −g(2, 1, t) .

Only one vector function, that changes sign on exchange of the masses,
is required

f12 = f(1, 2, t)
f21 = f(2, 1, t) = −f(1, 2, t) .

(2) The first axiom demands the equivalence of all inertial systems. The
equivalence is guaranteed if the forces are form-invariant under Galilei
transformations (3.7). This condition states that a transformation of the
coordinates and of time according to

r′
i = ri + vrelt + rrel (i = 1, 2) and t′ = t

should give

f(1, 2, t) = f(1′, 2′, t′) .

This is only possible if the vector function f depends on the difference
of the coordinates and the velocities

f12 = f(r1 − r2, v1 − v2, t)

f21 = f(r2 − r1, v2 − v1, t) .
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The general case is often not of interest. It can be assumed here that the
functions depend only on the coordinates

f12 = f(r1 − r2) = {fx(r1 − r2), fy(r1 − r2), fz(r1 − r2)}
f21 = f(r2 − r1) = −f(r1 − r2) .

This (internal) interaction between the mass points is called conservative
if the following condition is satisfied

rot1 f21 = rot2 f12 = 0 . (3.80)

The operators act on the coordinates indicated by the index. It is then
possible to represent the mutual interaction by the gradient of one scalar
function V , namely

f12 = −∇2V (r1 − r2) f21 = −∇1V (r1 − r2) . (3.81)

The third axiom is satisfied automatically. The two gradient operators
can be expressed in terms of the gradient operator for the difference of
the position vectors r = r1 − r2 . The relation between the operators ∇1

and ∇2 and the operator ∇ = (∂x, ∂y, ∂z) are

∇1 =
3∑

i=1

ei
∂

∂xi1
=
∑

i

ei
∂

∂xi

∂xi

∂xi1
=
∑

i

ei
∂

∂xi
= ∇

∇2 =
3∑

i=1

ei
∂

∂xi2
=
∑

i

ei
∂

∂xi

∂xi

∂xi2
= −

∑
i

ei
∂

∂xi
= −∇ .

The validity of energy conservation for such a conservative interaction can be
verified with the following argument. Consider a displacement of m1 by dr1

m1v̇1 · dr1 = f21 · dr1

and a displacement of m2 by dr2

m2v̇2 · dr2 = f12 · dr2 .

Addition of these equations and line integration from an initial situation

ti with r1(ti), r2(ti)

to a final situation

tf with r1(tf ), r2(tf )

gives∫ f

i

(m1v̇1 · dr1 + m2v̇2 · dr2) =
∫ f

i

(f21 · dr1 + f12 · dr2) .

The left hand side (LS) represents (as for a single mass point) the change of
the kinetic energy of the two particles
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LS =
[m1

2
v1(tf )2 +

m2

2
v2(tf )2

]
−
[m1

2
v1(ti)2 +

m2

2
v2(ti)2

]
.

The right hand side (RS) can be reformulated via the representation of the
forces by the scalar function V

RS = −
∫ f

i

(∇1V (r1 − r2) · dr1 + ∇2V (r1 − r2) · dr2) .

The expression within the brackets is the total differential of the potential
function V

= −
∫ f

i

dV = V (i) − V (f) .

The law of energy conservation for a system of two masses with a conservative
internal interaction can therefore be written in the form[m1

2
v2
1 +

m2

2
v2
2 + V (r1 − r2)

]
for each t

= E0 . (3.82)

The sum of the kinetic energies of the two masses plus the potential energy
between the two masses is constant in time.

An explicit example is gravitation with the force law

f21 = −f12 = −γm1m2
(r1 − r2)
|r1 − r2|3

or with r =
[
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

]1/2 in detail

= −γm1m2

{
x1 − x2

r3
,

y1 − y2

r3
,

z1 − z2

r3

}
.

The condition

rot1 f21 = rot2 f12 = 0

can easily be checked. The potential energy between the two masses is

V (r1 − r2) = −γ
m1m2

r
= −γ

m1m2

|r1 − r2| , (3.83)

where the asymptotic limit V (r → ∞) = 0 has been chosen. The potential
energy is a function of the separation of the two masses.

In the next step external conservative forces for the two particle system
are taken into account

d
dt

p1 = F 1(r1) + f21
d
dt

p2 = F 2(r2) + f12 . (3.84)

The external forces can be represented as the gradient of scalar functions

F 1 = −∇1U1(x1, y1, z1) F 2 = −∇2U2(x2, y2, z2)

if they are conservative, so that the relations

rot1F 1(r1) = rot2F 2(r2) = 0
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are valid. Integration of the equations of motion (3.84) with the same steps
as before yields

(T1 + T2)f − (T1 + T2)i

= V (1, 2)i − V (1, 2)f +
∫ f

i

(F 1 · dr1 + F 2 · dr2) .

The two remaining integrals are

−
∫ f

i

(dU1 + dU2)

so that the law of energy conservation can be stated as

[T1 + T2 + U1(r1) + U2(r2) + V (r1 − r2)]t = E0 . (3.85)

The sum of the kinetic energies plus the sum of the external potential energies
plus the internal potential energy between the masses is a conserved quantity.

An example for such a system is the system earth and moon moving in
the gravitational field of the sun (the source of the external forces). The total
energy of this two particle system is

mE

2
v2
E +

mM

2
v2
M − γ

mEmS

rE
− γ

mMmS

rM
− γ

mEmM

|rE − rM| = E0 .

The vectors rE and rM connect the centre of mass of the sun with the centres
of mass of the corresponding celestial bodies.

The starting point for the discussion of an arbitrary number of point
particles is the set of equations of motion

d
dt

pi = F i(ri) +
N∑

k=1

fki(rk − ri) (i = 1, 2, 3 . . . N) .

The indices of the forces indicate the following properties:

• The external forces depend only on the coordinates (ri). The functional
form could differ for the different masses. This is indicated by the index of
the vector function F i. In the case of gravitation the difference is only due
to different mass factors.

• The internal forces carry indices as well, which could for instance cover the
case, that some of the masses are also charged. For instance f12 and f21

could be gravitational forces, while f13 and f31 represent gravitational
and electric forces. The internal forces between each pair of masses are
characterised by one vector function if these forces satisfy the third axiom,
e.g. by

f ik(ri − rk) = g(ik)(|ri − rk|) (ri − rk)

fki(rk − ri) = g(ik)(|ri − rk|) (rk − ri) .
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The argumentation given for the case of two mass points can be repeated, if
all the forces involved are assumed to be conservative.

∇i × F i = 0 ∇i × fki = ∇k × f ik = 0 .

The argument proceeds as follows: use the equations of motion for the mass
with the index i and form the scalar product with dri , add the equations of
all the masses and integrate from the initial to the final situation. The result
of this calculation (which will not be outlined in detail) is the law of energy
conservation for a system of point particles with conservative internal and

external forces

E = T1+ T2+ T3+ . . . +TN

+U1+ U2+ U3+ . . . +UN

+V12+ V13+ . . . +V1N

+V23+ . . . +V2N

...
+VN−1,N = E0 .

(3.86)

The total energy of the system is composed of

1. the sum of the kinetic energies of the individual masses

T =
N∑

i=1

Ti =
N∑

i=1

mi

2
v2

i =
∑

i

p2
i

2mi
, (3.87)

2. the sum of the potential energies of the individual masses due to external
force fields

U =
N∑

i=1

Ui =
N∑

i=1

Ui(ri) , (3.88)

3. the sum of the internal potential energies between all pairs of particles

V =
∑
i<k

Vik =
∑
i<k

Vik(ri − rk)

=
1
2

∑
i �=k

Vik(ri − rk) . (3.89)

The second line is a consequence of the third axiom, which demands

Vik(ri − rk) = Vki(rk − ri) .

An example for such a system of ’mass points’ is our planetary system with
sun, planets, moons, asteroids etc., provided the bodies can really be regarded
as points. If the sun is chosen as the origin of the coordinate system and the
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action of the sun on the other bodies is regarded as an external force, then
external and internal forces

U =
∑

i

(
−γ

mimS

ri

)
V =

∑
i<k

(
−γ

mimk

|ri − rk|
)

have to be distinguished. All forces should be considered as internal if the
sun is not chosen as the origin.

A second example is a rigid body, composed of point particles, moving
in a conservative force field. As the internal energies (normally) depend only
on the separation of the mass points and as this separation is by definition
constant, the internal potential energy does not change in time. The internal
potential energy is therefore a constant which is not of interest for the motion
of the rigid body as a whole. It can be set equal to zero, so that the energy
of a rigid body is

E =
∑

i

Ti +
∑

i

Ui = const.

Before the discussion of the application of the conservation laws to the
collision of two mass points (or corresponding point charges), the calculation
of the potential or the potential energy of a continuous mass distribution,
which has been quoted on page 121, will be outlined.

3.2.4.1 The potential energy of a continuous mass distribution. The
discussion of the potential energy of a mass m in the gravitational field of a
distribution of N discrete masses (mi)

U(r) =
N∑

i=1

(
−γ

mmi

|r − ri|
)

can be extended to the question: how can the potential energy be calculated
of the discrete distribution is replaced by a continuous distribution? The
answer is: the N masses have to be replaced by infinitesimal elements (dmi),
which are described by density (ρ) times an infinitesimal volume dV in the
continuous limit. The summation has to be replaced by integration (Fig. 3.41)∑

i

dmif(ri) −→
∫∫∫

V

ρ(r′)f(r′)dV ′ .

The total mass of the distribution can be calculated from the density
distribution by

M =
∫∫∫

V

ρ(r′)dV ′ .

The potential energy of the mass m in the field of the mass distribution is

U(r) =
∫∫∫

V

(−γm)
ρ(r′)dV ′

|r − r′| .
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Fig. 3.41. Calculation of the potential energy of mass distributions

The evaluation of the triple integral is not necessarily simple for a general
density distribution and an arbitrary volume. Of special interest is the poten-
tial energy in the gravitational field of the earth for which an ideal spherical
shape is assumed

RE ≈ 6.37 · 108 cm = 6370 km

ME ≈ 5.98 · 1027 g = 5.98 · 1024 kg .

It will also be assumed that the distribution is isotropic

ρ(r) =

{
ρ(r) r ≤ RE

0 r ≥ RE

,

so that the density varies only with the radius. The mass is then calculated
by the integral

ME = 4π
∫ RE

0

ρ(r′)r
′2dr′ .

A good choice of the coordinate system for the evaluation of the triple integral
for the potential energy is the following: place the origin in the centre of the
sphere and let the z - axis run through the mass m. This choice does not
amount to a restriction because of the symmetry of the present problem.
Choose spherical coordinates so that the integral

U(r) = −γm

∫ 2π

0

dϕ′
∫ RE

0

r′2ρ(r′)dr′
∫ π

0

sin θ′dθ′

[r2 + r′2 − 2rr′ cos θ′]1/2

has to be considered. The integral over the angle ϕ′ can be written down
directly. The substitution

x = cos θ′ dx = − sin θ′dθ′

is used for the integration over the angle θ′ . Integration over the variable x
in the double integral

U(r) = −2πγm

∫ RE

0

r′2ρ(r′)dr′
∫ 1

−1

dx

[r2 + r′2 − 2rr′x]1/2

yields the standard result
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I =
∫ 1

−1

dx

[r2 + r′2 − 2rr′x]1/2
= − 1

rr′
[r2 + r

′2 − 2rr′x]1/2

∣∣∣∣
1

−1

,

but insertion of the limits has to be handled with care. The result for r > r′

is

I = − 1
rr′

[(r − r′) − (r + r′)] =
2
r

,

for r′ > r

I = − 1
rr′

[(r′ − r) − (r + r′)] =
2
r′

.

The potential energy is

U(r) = (−γm)(4π)
1
r

∫ R

0

ρ(r′)r
′2dr′

or

U(r) = −γ
mME

r
(r ≥ R) (3.90)

if the mass m is outside the sphere (the case r > R). It is independent of the
radial variation of the mass distribution. If the mass m is inside the sphere,
U is given by

U(r) = (−γm)(4π)

[
1
r

∫ r

0

ρ(r′)r
′2dr′ +

∫ R

r

ρ(r′)r′dr′
]

.

Further evaluation is only possible if ρ(r′) is known. The simplest case is a
homogeneous mass distribution, ρ(r′) = ρ0 , for which the potential energy
can be calculated as

U(r) = (−γm)(4πρ0)

[
1
r

∫ r

0

r
′2dr′ +

∫ R

r

r′dr′
]

= (−γm)(4πρ0)
[
1
3
r2 +

1
2
R2 − 1

2
r2

]

= (−γm)(4πρ0)
[
1
2
R2 − 1

6
r2

]
.

The constant density can be replaced by the total mass

ρ0 =
3
4π

ME

R3

so that

U(r) = (−γmME)
[
3
2

1
R

− 1
2

r2

R3

]
r ≤ R . (3.91)

For points outside the sphere, the mass distribution looks (independent of
the radial form if the distribution) as if the total mass was concentrated in
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the centre of mass. The potential energy of a homogeneous distribution has
a parabolic form7 in the interior of the sphere.

The gravitational field of the (spherical, homogeneous) earth (quoted on
p. 121) can now be calculated as

r ≥ R G = − 1
m

∇U = −γ
ME

r2
er (3.92)

r ≤ R G = − 1
m

∇U = −γ
ME

R3
rer . (3.93)

The result for the potential energy can be used to relate the gravitational
acceleration near the surface of the earth and the universal gravitational
constant. The gravitational potential (3.90) for points outside of the earth
(with r = RE + h) is

U = −γ
mME

RE

(
1

1 + h/RE

)
.

It can be expanded in terms of the binomial (or geometrical) series for points
close to the surface of the earth

U = −γ
mME

RE

(
1 − h

RE
+

h2

R2
E

− . . .

)

= const + m

[
γ
ME

R2
E

]
h − m

[
γ
ME

R3
E

]
h2 + . . . = U0 + mgh + . . .

for

h 
 RE ≈ 6370 km .

The expression in the first bracket is equal to mgh, so that the relation
between the two gravitational constants g and γ is found to be

g =
γME

R2
E

. (3.94)

3.2.5 Application: collision problems

The conservation laws (in particular momentum conservation and a simple
form of energy conservation) play a special role in the discussion of collision
problems. The situation that is usually considered is the following: two masses
m1 and m2 (point particles) move uniformly along straight lines so that they
collide at a certain time. External forces are not present. Either they can be
neglected or they are eliminated as in the demonstration experiment using
an air cushion rail. As long as the separation of the masses is sufficiently
7 Compare Fig. 3.40, which shows the gravitational potential of a spherical, ho-

mogeneous mass distribution.
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large, the mutual gravitation (or other interaction) can also be neglected.
The system before the collision is therefore characterised by

Total momentum: P in = m1v1 + m2v2

Total energy: Ein =
m1

2
v2
1 +

m2

2
v2
2 .

The details of the collision process are actually rather complicated. The
masses (objects) can be deformed, regain their shape, etc. Energy is released
from the collision system in the form of sound and/or heat. It can, however,
be assumed – notwithstanding all details – that these processes are controlled
by internal forces (interatomic or intermolecular forces, that is electric forces).
As these forces satisfy the third axiom, momentum is conserved, so that the
relation

P in = P out (3.95)

is valid for the sum of the momenta of the two objects independent of these
details. Further discussion of the problem depends on the situation concerning
the energy. Several cases can be distinguished.

3.2.5.1 The completely elastic collision. The masses retain their original
form during the collision and move apart. It is assumed that no energy loss
has occurred. This assumption is quite well realised for the collision of billiard
or steel balls, if they are not set into rotational motion. The sum of the final
momenta is

P out =
m1

2
v′
1 +

m2

2
v′
2 = P in . (3.96)

The total energy is again kinetic if the masses are sufficiently far apart

Eout =
m1

2
v′2
1 +

m2

2
v′2
2 = Ein . (3.97)

It can be asked in how far the velocities after the collision can be determined
on the basis of the conservation laws if the velocity components before the col-
lision are known. In three-dimensional space six velocity components would
have to be calculated. There are, however, only four equations (three equa-
tions for momentum conservation plus one for energy conservation) available.
The discussion can be restricted to two space dimensions if the internal forces
acting during the collision allow angular momentum conservation. The colli-
sion partners will then move in the same plane before and after the collision.
In the two-dimensional world three equations are available for the determina-
tion of four unknown velocity components. The final situation can still not be
determined fully by the conservation laws alone, although some useful par-
tial answers are possible. Only for central elastic collisions (a one-dimensional
problem) do the number of relations and the number of unknowns agree.
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3.2.5.2 The central elastic collision. The conservation laws for the one-
dimensional case are

m1v1 + m2v2 = m1v
′
1 + m2v

′
2

1
2
m1v

2
1 +

1
2
m2v

2
2 =

1
2
m1v

′2
1 +

1
2
m2v

′2
2 .

The direction of the motion is expressed by the sign of the velocity compo-
nents. The two velocity components after the collision can be determined,
if the velocities (and the masses) are known before the collision. A direct
combination of the two equations leads to (see Probl. 3.19)

v′1 =
(

m1 − m2

m1 + m2

)
v1 +

(
2m2

m1 + m2

)
v2 (3.98)

v′2 =
(

2m1

m1 + m2

)
v1 −

(
m1 − m2

m1 + m2

)
v2 . (3.99)

Any number of special cases can be discussed with the aid of these relations.
For instance: the two masses exchange their velocities for m1 = m2 = m

v′1 = v2, v′2 = v1 .

The final situation is: the mass m1 will be at rest after the collision and m2

will move on with the velocity v1 , if m2 = m is initially at rest and is hit by
an equally large mass m1 = m moving with the velocity v1 .
The relations reduce to

v′1 ≈ v1, v′2 ≈ 2v1 − v2

for m1 >> m2 . There is a total reflection of the small mass, if it hits a large
mass at rest (v1 = 0). The small mass will move with the velocity 3v after
the collision, if the two masses move towards each other with the same speed
(v1 = −v2 = v). The large mass continues without a substantial change of
its velocity.

3.2.5.3 The noncentral elastic collision. This scenario in two dimensions
is sketched in Figure 3.42a. The conservation laws are in this case

m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (2 equations) (3.100)

m1

2
v2
1 +

m2

2
v2
2 =

m1

2
v

′2
1 +

m2

2
v

′2
2 (1 equation) . (3.101)

A complete determination of the four components of the final velocities

(v′1x, v′1y, v′2x, v′2y)

is not possible. It is, however, possible to make useful partial statements,
which will be discussed here only for the special case v2 = 0 (the second
mass is at rest before the collision). Momentum conservation leads to the
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Fig. 3.42. Noncentral elastic collision

statement: the coordinates of the endpoint of the vector p′
2 satisfy (Fig. 3.42b)

the relation

x2 + y2 = m2
2v

′2
2 , (m1v1 − x)2 + y2 = m2

1v
′2
1 ,

where (x, y) stand for the coordinates of the endpoint of p′
2. Insertion of this

relation into the law of energy conservation yields

m1v
2
1 =

1
m1

[
(m1v1 − x)2 + y2

]
+

1
m2

[x2 + y2] .

The rearrangement of this equation[
x − m1m2

m1 + m2
v1

]2

+ y2 =
[

m1m2

m1 + m2
v1

]2

is the equation of a circle. The coordinates of the centre are

P M =
(

m1m2

m1 + m2
v1, 0

)
,

the radius is

R =
m1m2

m1 + m2
v1 .

The tip of the momentum vector p′
2 lies on a circle, which passes through the

starting point of the momentum vector p1. The centre of the circle lies on the
vector p1 and divides it in the ratio m2/m1 (Fig. 3.43a). The situation after
the collision permits, as a consequence of the conservation laws, statements
as for instance: If the direction or the magnitude of one of the momentum
vectors is measured after the collision, all other quantities can be calculated.

The centre of the circle bisects the momentum vector p1 for the collision
of two equal masses (Fig. 3.43b). There is always a right angle between the
momenta of the masses after the collision.

3.2.5.4 Inelastic collisions. The masses retain (possibly in part) their de-
formation or energy is lost in a different way (e.g. sound) during the collision
process. Momentum conservation is still valid

P out = m1v
′
1 + m2v

′
2 = P in

but the balance of energy has to be changed to
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Fig. 3.43. Noncentral elastic collision

Eout =
m1

2
v

′2
1 +

m2

2
v

′2
2 + Q = Ein .

The quantity Q is the energy loss, that is the amount, which has been trans-
formed into other forms of energy. Even for a central collision (one dimen-
sional) not all three quantities (v′1, v′2, Q) can be determined with the two
equations available in this case.

A number of partial results can, however, also be obtained in this case,
as e.g. for

m1 = m2 = m v2 = 0

with the relations

momentum : v1 − v′1 = v′2

energy : (v1 − v′1)(v1 + v′1) = v
′2
2 +

2Q
m

.
(3.102)

Division of the two equations leads to the result

(v1 + v′1) = v′2 +
2Q
v′2m

. (3.103)

Addition of the first equation in (3.102) and of (3.103) yields for v′2

v′2 =
v1

2
±
[
v2
1

4
− Q

m

]1/2

. (3.104)

This statement only makes sense, if the radicand is positive, that is if

v2
1

4
− Q

m
≥ 0 or

1
2
T1 ≥ Q .

The energy loss can at most amount to half of the energy brought in by the
incident mass. This restriction is a direct consequence of the conservation
laws.
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3.2.5.5 Completely inelastic collisions. The deformed masses coalesce
during the collision and move on together (e.g. the collision of a steel ball
with a lump of putty or the collision of two lumps of putty). The situation
after the collision is characterised by

P out = (m1 + m2)v′ = P in

Eout =
1
2
(m1 + m2)v

′2 + Q = Ein .

It is possible to determine the velocity and the energy loss after the colli-
sion both for central collisions as well as for the general case. In each case
the number of equations are matched (two quantities and equations in one
dimension, three in two dimensions).

The relations for a central collision

v′ =
1

m1 + m2
(m1v1 + m2v2)

Q =
m1m2

2(m1 + m2)
(v1 − v2)2

allow e.g. the statements: the combined mass M = (m1 + m2) will be at
rest (v′ = 0) after the collision, if two equal masses (m1 = m2) collide with
opposite initial velocities of the same magnitude (v2 = −v1). All initial kinetic
energy is transformed into deformation energy (Q = m1v

2
1).

(a) (b)
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Fig. 3.44. Inelastic Collisions

An example of a two dimensional collision of this kind is the following:
two masses, initially on straight line trajectories which are perpendicular to
each other, collide (Fig. 3.44a). Momentum conservation states

m1|v1| + 0 = (m1 + m2)vx −→ vx =
m1

M
| v1|

0 − m2|v2| = (m1 + m2)vy −→ vy = −m2

M
| v2| .

After the collision the combined masses have a negative velocity component
in the y - direction. The final velocity would be v = (0.5|v|, −0.5|v|) for equal
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masses and equal speeds before the collision. The corresponding energy loss
is

Q = Tin − Tout

=
m1

2
v2
1 +

m2

2
v2
2 − M

2

(
m2

1

M2
v2
1 +

m2
2

M2
v2
2

)

=
1
2

m1m2

M
(v2

1 + v2
2) .

It is in particular

Q

Tin
=

m2/m1

1 + m2/m1

if m2 is initially at rest (v2 = 0 and is hit by m1 and taken along). The energy
loss grows with the ratio of the masses and is nearly complete if a small mass
m1 hits a big mass m2 at rest (Fig. 3.44b).

A historical example for the application of simple collision theory is the
discovery of the neutron by Chadwick in 1932. In this year only two elemen-
tary particles were known, the electron e and the proton p . Both particles
are charged so that they can be identified by deflection in electric and mag-
netic fields. In addition, a neutral nuclear radiation, the γ - radiation was
known. γ - rays are, as light or radio waves, a special form of electromagnetic
radiation. The different forms of radiation are distinguished by their wave
length

λγ ≈ 10−10 cm λlight ≈ 10−5 cm λradio ≈ 104 cm .

In the year 1932 several experimental groups investigated the nuclear reaction
4
2He + 9

4Be −→ 12
6 C + A .

A Helium nucleus collides with a Beryllium nucleus. Two reaction products
can be identified, a carbon nucleus and a ’particle’ A, which is electrically
neutral. It was relatively easy to find out, that this particle did not correspond
to γ - radiation (photons). The energy balance did not match. Chadwick
suggested that the ’unknown radiation’ could be a massive, neutral particle.
In order to verify this hypothesis, two additional experiments were performed,
which, in a simplified form, can be described as
Experiment 1: Collision of the neutral ’particle’ with an unknown velocity v
and mass m with a proton at rest

Av + pvp=0 −→ Av′ + pv′
p

.

The experiment is analysed with the aid of momentum and energy conserva-
tion

mv = mv′ + mpv
′
p

m

2
v2 =

m

2
v

′2 +
mp

2
v

′2
p

which leads to the relation
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v′p =
2m

(mp + m)
v .

As neither the mass m nor the velocity v of the new particle were known, a
second experiment was necessary.
Experiment 2: Collision of A with a nitrogen nucleus (14N , with mass MN ≈
14 mp) at rest

Av + 14
7 NvN=0 −→ Av′ + 14

7 Nv′
N

.

Application of the conservation laws gives in this case

v′N =
2m

(MN + m)
v .

Combination of the two results leads to the ratio
v′p
v′N

=
MN + m

(mp + m)
≈ 14mp + m

(mp + m)
.

The ratio of the velocities of the particles colliding with A allow a determi-
nation of the unknown mass. This ratio could be determined from tracks in
cloud chambers as the emerging reaction partners are charged. The result
was

v′p
v′N

≈ 7, 5

which implies m ≈ mp . The nuclear reaction chain, which led to the identi-
fication of the neutron, is

4
2He + 9

4Be −→ 13
6 C −→ 12

6 C + 1
0n .

The first step is a fusion process in which the carbon isotope 13
6 C is formed.

This nucleus decays into a neutron and the stable carbon isotope 12
6 C .
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Newton’s equations of motion allow, at least in principle, the calculation of
the time development of a system of mass points. The prerequisite is that all
forces of the system (e.g. as functions of the position of the particles) and
the initial conditions for all masses are known. Independent of the technical
realisation of such calculations, a distinction is necessary between integrable
or chaotic systems. This point will be addressed in Chap. 5.4.3. A system is
called integrable if initial conditions that are infinitesimally close will lead to
solutions that are infinitesimal close. The solution diverges (exponentially)
even for infinitesimally close initial conditions in the case of chaotic systems.

A selection of examples for the motion of one mass point by solution of
the equations

mr̈ = F

for integrable systems will be presented in this chapter. Additional problems
will be discussed in Chap. 5 and 6 after an introduction of more advanced
methods. The first problem, that will be considered in this chapter, is a
simplified treatment of planetary motion, known as Kepler’s problem. This
is followed by a presentation of some variants of the problem of oscillations,
namely the mathematical pendulum and damped as well as driven oscillators.

4.1 Kepler’s problem

A problem, that has occupied mankind since early times, is the understanding
of the regular motion of the celestial bodies in our solar system. A sufficiently
accurate calculation of this motion is only possible through the nontrivial
integration of a set of coupled differential equations for the motion of a large
number of interacting objects. The goal that will be pursued in this chapter
is more modest. Kepler’s laws for the motion of the planets (which are quoted
on p. 150 ff) are to be investigated and explained in a simple fashion. The
motion of comets and meteorites can be discussed on the same basis.

R.M. Dreizler, C.S. Lüdde, Theoretical Mechanics, Graduate Texts in Physics,  
DOI 10.1007/978-3-642-11138-9_4, © Springer-Verlag Berlin Heidelberg 2010 
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4.1.1 Preliminaries

It is a well known fact that the solar mass is the dominant mass in our pla-
netary system. A comparison using the mass of the earth (mE) as a measure
emphasises this statement

solar mass M ≈ 333000mE

mass of the lightest planet (Mercury) mMe ≈ 1
20

mE

mass of the heaviest planet (Jupiter) mJu ≈ 320mE .

The dominant solar mass is the reason why the orbit of each of the planets
is mainly determined by the gravitational action of the sun. The force that
a celestial body X exerts on the earth (compare (3.2)) is

FXE = γ
mXmE

R2
XE

.

The ratio of gravitational action of the sun on the earth in comparison with
the gravitational action of another body is therefore

FSE

FXE
=

M

mX

R2
XE

R2
SE

.

The parameters indicated in the first two lines of Table 4.1 are found for the
objects in the vicinity of the earth. The ratio of the forces (rounded) given
in the last line are calculated with a more accurate value of the solar mass
M = 332 942 mE.

Table 4.1. Gravitational action of the sun and other celestial objects on the earth

Mars Venus Jupiter Moon [unit]

mX 0.107 0.815 318 0.0123 mE

RXE (min) 0.524 0.277 4.20 0.00257 RSE

FSE/FXE 852 000 31 300 18 500 178

The only object that has a comparable influence on the earth as the sun
(though not really close) is the moon. The motion of the earth, as well as
the motion of every other planet, can for this reason, be treated in a first
approximation as a two body problem involving only the sun and the celestial
body under consideration. The dominant solar mass allows an additional
simplification. It is possible to ignore the motion of the sun, so that the two
body problem is reduced to a one body problem. This approximation can, as
shown on page 152 ff, be corrected easily by the introduction of relative and
centre of mass coordinates.
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4.1.2 Planetary motion

With the assumptions stated, the motion of each of the planets is determined
by the (vectorial) equation of motion

mPr̈ = −γ
M mP

r3
r . (4.1)

As before, M is the solar mass, mP the mass of the planet and r the vector
from the sun to the planet. This vectorial differential equation characterises
the simple Kepler problem.

4.1.2.1 Solution of the equation of motion. The first remark concerns
the fact that the mass of the planet can be eliminated. The orbits calculated
are not specific for a particular planet. The earth would, for instance, circu-
late around the sun like Venus, if the earth would be placed on the orbit of
Venus and provided with the appropriate initial conditions. The second re-
mark is concerned with the choice of optimal coordinates. Conservation laws
are helpful in this respect (and for further discussion). The simple Kepler
problem (4.1) is a central force problem. Angular momentum is a conserved
quantity. The motion takes place in a plane, which is defined by the initial
values r(0) and v(0) . In view of the central force, plane polar coordinates are
therefore the best choice. The corresponding decomposition of the vectorial
equation of motion is (see (2.60))

ar = r̈ − rϕ̇2 = −γ
M

r2
(4.2)

aϕ = rϕ̈ + 2ṙϕ̇ = 0 . (4.3)

The initial conditions at t0 = 0 with values of r0, ṙ0, ϕ0, ϕ̇0 have to be speci-
fied. The second equation expresses (see (2.63)) angular momentum conser-
vation (the law of areas)

r2(t)ϕ̇(t) = A . (4.4)

The constant A is determined by the initial conditions as

A = r2
0ϕ̇0 =

l0
mP

. (4.5)

The angular coordinate ϕ(t) can be determined via separation of variables
from

ϕ(t) − ϕ0 =
∫ t

0

A

r(t′)2
dt′ (4.6)

once r(t) has been calculated. The radial coordinate r(t) is obtained by so-
lution of the differential equation (4.2). As the force is conservative, energy
conservation can be utilised for a ’first integration’

mP

2
v2 − γ

mPM

r
= E0 , (4.7)
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where the quantity v2 is to be expressed in terms of polar coordinates (2.57)
as

v2 = ṙ2 + r2ϕ̇2 .

The radial differential equation to be solved is therefore

1
2
ṙ2 +

1
2

A2

r2
− γ

M

r
= B =

E0

mP
(4.8)

if ϕ̇ is replaced by A/r2 and the mass of the planet is eliminated. The con-
stant B is determined by the initial energy (divided by the planetary mass).
Separation of variables yields the basic integral of the simple Kepler problem

t = ±
∫ r

r0

dr′[
2B + 2γ

M

r′
− A2

r′2

]1/2
. (4.9)

The sign has to be chosen, so that the resulting function t = t(r) is a mono-
tonically increasing function. The inverse function r = r(t) can be inserted
into the angular momentum conservation law (4.6). The problem would be
solved fully after evaluation of this integral.

A similar statement can be made for any central force problem (that is
the motion of a mass point m in a potential Φ(r) = U(r)/m)

t = ±
√

m

2

∫ r

r0

dr′[
E0 − U(r′) − mA2

2r′2

]1/2
. (4.10)

The method of solution indicated can, unfortunately, not be handled in
an analytic fashion for the Kepler problem. The reason is the fact that the
inversion of the function t = t(r) can only be carried through numerically.
This is illustrated explicitly by the discussion of the meteorite problem in
Chap. 4.1.3 or by the discussion of the parametric representation of the plan-
etary motion on p. 153 and ff.

It is necessary to look for a different approach to the problem if an analy-
tical discussion is the aim. Instead of calculating the explicit time devel-
opment of the motion (the functions r(t) and ϕ(t)), the calculation can be
restricted to the determination of the possible trajectories of the Kepler prob-
lem. The trajectories are characterised by a function r = r(ϕ) – or ϕ = ϕ(r)
– which could be obtained from the functions r(t) and ϕ(t) by elimination
of the parameter t . The following reformulation of the problem leads to a
direct determination of the trajectories. Differentiate the function r = r(ϕ)
with respect to time using the chain rule

ṙ =
d
dt

r(ϕ) =
dr

dϕ
ϕ̇ =

A

r2

dr

dϕ
.

Insert this into the energy expression (4.8)
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1
2

A2

r4

(
dr

dϕ

)2

+
1
2

A2

r2
− γ

M

r
= B (4.11)

and sort with respect to the derivative dr/dϕ

dr

dϕ
= ±r2

A

[
2B + 2γM

1
r
− A2

r2

]1/2

. (4.12)

The sign in this equation determines the direction of the change of ϕ with
the variable r . Separation of variables yields the integral

ϕ(r) − ϕ0 = ±
∫ r

r0

Adr′

r′2

[
2B +

2γM

r′
− A2

r′2

]−1/2

. (4.13)

This integral can be evaluated by elementary means as the substitution

s′ =
1
r′

−→ ds′ = −dr′

r′2

leads to

ϕ(s) − ϕ(s0) = ∓
∫ s

s0

Ads′

[2B + 2γMs′ − A2s′2]1/2
.

The primitive of this integral can be found in standard Tables1

ϕ(s) − ϕ(s0) = ±
[
arcsin

{
−A2s′ + γM[

γ2M2 + 2A2B
]1/2

}]s

s0

. (4.14)

In order to simplify the discussion as much as possible, the lower limit of the
integral, s0 , is chosen so that the radius vector and the velocity vector are
perpendicular at the intersection of the x - axis and the trajectory (Fig. 4.1).
Such points are characterised by dr/dϕ = 0 . The differential equation (4.12)

 v

 r

 y

 x

Fig. 4.1. Kepler problem: choice of the coordinate sys-
tem

leads therefore to
dr

dϕ
= 0 −→ 1

2
A2s2

0 − γMs0 = B

(
s0 =

1
r0

)
.

Solution of this quadratic equation gives
1 see references [4].
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A2s0 = γM ± [
γ2M2 + 2A2B

]1/2
.

As the quantity B can be negative, it has to be ensured that the radicand is
larger than or equal to zero in order to obtain real values for s0 . It can be
demonstrated, after the process of solution is completed (see D.tail 4.1),
that this is the case.

The points of intersection of the trajectory with the x - axis correspond
to the angles ϕ0 = 0 and/or ϕ0 = π . The result (4.14) goes over into

ϕ(s) −
[
π
0

]
= ±

{
arcsin

[
−A2s + γM

[γ2M2 + 2A2B]1/2

]
− arcsin

[−1
+1

]}

= ±
{

arcsin

[
−A2s + γM

[γ2M2 + 2A2B]1/2

]
± π

2

}

if these values are used as lower limits. Resolution with respect to s , that is
1/r , gives

A2

γM

1
r

= 1 ±
[
1 +

2A2B

γ2M2

]1/2

cosϕ .

The equation of the orbits of the simple Kepler problem, expressed in polar
coordinates, is

p

r
= 1 ± ε cosϕ . (4.15)

The parameters p and ε depend on the parameters A and B , defined in (4.5)
and (4.8), that is on the initial values

p =
A2

γ M
=

l20
γm2

PM
(4.16)

ε =
[
1 +

2A2B

γ2M2

]1/2

=
[
1 +

2l20E0

γ2m3
PM2

]1/2

. (4.17)

The initial energy could be replaced by

E0 =
mP

2
ṙ2
0 +

1
2

l20
mPr2

0

− γ
mPM

r0
,

the initial angular momentum by

l0 = mPr2
0ϕ̇0 .
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4.1.2.2 Conic sections. Equation (4.15) characterises the conic sections:
circles, ellipses, parabolae and hyperbolae. They are referred in the present
case to a coordinate system for which the origin is one of the focal points.
The Cartesian representation of the conic sections has to be reformulated in
terms of appropriate polar coordinates in order to prove this assertion.

A parabola is the locus of all points, for which the distance from a given
line (the guide line or directrix) and a given point (the focal point) is the

 ϕ

 r

 F

 p

 y

 x

Fig. 4.2. Definition: parabola

same (Fig. 4.2). The standard Cartesian form of the two branches is given
by the equations

y2 = +2px forx ≥ 0

y2 = −2px forx ≤ 0 .

The parameter p marks the shortest distance of the focal point from the guide
line. The sign specifies whether the parabola opens to the right (plus sign)
or to the left. Polar coordinates, which are referred to the two possible focal
points, are defined by the transformation

x = ±p

2
+ r cosϕ y = r sinϕ .

The sign has to correspond to the sign of the normal form. Insertion into the
equation of the parabola leads to

r2 sin2 ϕ = p2 ± 2pr cosϕ r2 = r2 cos2 ϕ ± 2pr cosϕ + p2

r = ±(p ± r cosϕ) .

Resolution in the form2

p

r
= 1 ± cosϕ

shows, that equation (4.15) describes a parabola if the parameter ε has the
value 1 .

An ellipse is defined as the locus of all points, for which the sum of the
distances from two given points is always the same (Fig. 4.3). The Cartesian
2 The positive sign in front of the brackets has to used in order to obtain a positive

radial coordinate.
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 2 P
 1 P

 e

 b

 a Fig. 4.3. Definition: ellipse

principal axis form is

x2

a2
+

y2

b2
= 1 .

The position of the focal points3 along the semi-major axis (with a > b) is

xB = ±e with e = [a2 − b2]1/2 .

The polar coordinates referred to the focal points are

x = ±e + r cosϕ y = r sinϕ

so that

b2(e2 ± 2er cosϕ + r2 cos2 ϕ) + a2r2 sin2 ϕ = a2b2

b4 ∓ 2eb2r cosϕ + e2r2 cos2 ϕ = a2r2

±(b2 ∓ er cosϕ) = ar .

As the global sign is again not relevant, the relation

b2/a

r
= 1 ± ε cosϕ

follows. The numerical eccentricity

ε =
e

a
=
[
1 − b2

a2

]1/2

characterises a circle (ε = 0) or an ellipse (0 < ε < 1).
A hyperbola is the locus of all points for which the difference of the

distance from two points is constant (Fig. 4.4). The principal axis form is

x2

a2
− y2

b2
= 1 . (4.18)

The position of the focal points on the x - axis is given by

xB = ±e with e = [a2 + b2]1/2

3 The relation 2
√

e2 + b2 = (a+e)+(a−e) is used (see Fig. 4.3) for the derivation
of this equation. It compares the sum of the distances of a locus P1 on the y -
axis from the focal points with the sum of the distances of the locus P2 on the
x - axis.
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 r

 b
 a

 e

Fig. 4.4. Definition: hyperbola

in this case. Insertion of the transformation to polar coordinates

x = ±e + r cosϕ y = r sinϕ

into the normal form yields

a2b2 = b2e2 ± 2b2er cosϕ + b2r2 cos2 ϕ − a2r2 sin2 ϕ

a2r2 = b4 ± 2eb2r cosϕ + e2r2 cos2 ϕ

ar = ±(b2 ± er cosϕ) .

The formula for a hyperbola in polar coordinates referred to the focal points
is therefore

b2/a

r
= 1 ± ε cosϕ ε =

[
1 +

b2

a2

]1/2

.

The parameter ε is larger than 1 .

4.1.2.3 Types of orbits. The parameter p in (4.15) is given by the ratio
p = b2/a . It characterises the opening of the parabola or hyperbola, or the
’size’ of the ellipse. The numerical eccentricity ε fixes the type of trajectory.
The sign in the expression 1 ± ε cosϕ indicates whether the conic sections are
oriented towards the left (plus sign) or to the right (Fig. 4.5). The angular

Fig. 4.5. Role of the sign in Eq. (4.15) of the conic sections

range for the different orbits is:

• The standard range 0 ≤ ϕ ≤ 2π applies for an ellipse.
• The range is −π ≤ ϕ ≤ π for a parabola and the positive sign, in the case

of the negative sign it is 0 ≤ ϕ ≤ 2π . The different ranges are chosen so
that the zeros of 1 ± cosϕ occur at the edge of the interval.
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• The range is

− arccos (−1/ε) ≤ ϕ ≤ arccos (−1/ε)

for the hyperbola and +ε , in the case of −ε

arccos (1/ε) ≤ ϕ ≤ 2π − arccos (1/ε) .

The limits are chosen so that the curves are bounded by the asymptotes.

The parameters p and ε of the Kepler orbits (see (4.17))

p =
b2

a
=

l20
mP

(
1

mPMγ

)
(4.19)

ε =
[
1 +

b2

a2

]1/2

=
[
1 + 2E0

l20
mP

1
(mPMγ)2

]1/2

(4.20)

indicate which initial values characterise the type of trajectory. The type
is determined by the initial values of both the angular momentum and the
energy, details of the orbits (opening, ratio of the axes, radius) by angular
momentum alone. A circular orbit is obtained for ε = 0 . This corresponds
to an energy value

E0 = −mP

2l20
(mPMγ)2 .

Angular momentum and energy (negative) have to be matched for the case
of a circle. The parameter ε would be imaginary if an energy smaller than
the energy characterising the circular orbit is chosen for a given angular
momentum. This means: for a given value of the angular momentum the
circular trajectory is the one with the lowest energy value possible. Elliptic
orbits are characterised by 0 < ε < 1 . These values of ε correspond to an
energy range

E0(circle) < E0 < 0 .

Circle and ellipse are possible trajectories of planets. They correspond to
trajectories, for which the planet is ’bound’ to the sun (E0 < 0). A parabola
is obtained for ε = 1 or E0 = 0, a hyperbola for ε > 1 or E0 > 0 . These
are possible trajectories of comets. An object enters (at a large distance) the
gravitational field of the central body, passes more or less closely and vanishes
again into space.

It should be noted that there exist objects in our planetary system with
elliptic orbits which are close to a parabolic orbit. These are called returning
comets. A well known example is Halley’s comet (with a period of approxi-
mately 76 years). For this ’comet’ the maximal distance from the sun is about
60 times larger then the minimal distance.

The orbits of the Kepler problem are mainly determined by the energy.
For this reason a simpler (but less detailed) discussion of the Kepler problem
is possible. The total energy can be written as
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E =
mPṙ2

2
+

1
2

l20
mPr2

− γ
mPM

r
. (4.21)

The individual terms are kinetic energy of the radial motion, kinetic energy
of the rotational motion and potential energy of gravitation. The second term
can be interpreted as a potential energy of the radial motion because angular
momentum is conserved (a constant of motion). The sum of this centrifugal
contribution and the gravitational potential energy is referred to as the
effective potential energy

E = Trad + Ucent + Ugrav = Trad + Ueff .

A plot of Ueff(r) exhibits (provided l0 �= 0) the characteristics indicated in
Fig. 4.6a. The centrifugal term dominates (as 1/r2) for r → 0 . The effective
potential energy goes over into the gravitational contribution, which decreases
more slowly (1/r) then the centrifugal term for r → ∞. The total energy
E0 = const. is composed of a (mainly negative) contribution due to the
potential energy and a (positive) contribution due to the kinetic energy for
each value of r .

(a) (b)

0E

E

r

radT

effU

effective potential

0(Circ.)E

0 (Ell.)E

0 (Par.)E

0 (Hyp.)E E

r

energy and conic sections

Fig. 4.6. Kepler problem: energy as a function of the radial coordinate

The correlation between the type of orbit and the energy is indicated in
Fig. 4.6b. The lowest possible energy value with

E0(min) = Ueff(R) Trad = 0

is found for the circular orbit, which is distinguished by a constant distance
from the origin (ṙ = 0). There exists two turning points with ṙ = 0 for initial
energies E0 between the minimal value and zero. The total energy (negative)
is composed of the sum of Ueff (negative) and Trad (positive) for each value
of r between the points closest and furthest from the sun (perihelion and
aphelion). A trajectory with two turning points and a finite range of r - values
corresponds to an ellipse (the explicit form of the orbit can, however, not be
extracted from energy considerations). There is no binding to the central
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body for E0 ≥ 0 . A parabola with E0 = 0 still has two (quasi) turning
points: one near the sun, the other at infinity. The parabola is the limit of
an infinitely stretched ellipse. A hyperbola with E0 > 0 is distinguished by a
single turning point in the vicinity of the sun.

With respect to angular momentum the following statement can be
gleaned from Fig. 4.7:

(1) The inner turning points of the ellipses, parabolae and hyperbolae are
further from the sun and the binding energy of a circular orbit (measured
by the magnitude of the negative energy) is weaker for larger value of l0
(Fig. 4.7a).

(2) The effective potential is identical with the gravitational potential for
l0 = 0 . Possible trajectories are straight lines in a radial direction towards
or away from the sun (Fig. 4.7b). Energy values with E0 < 0 ( the objects
rises and falls) or with E0 ≥ 0 (the object moves away from or moves
towards the sun) are possible.

(a) (b)

 / l(0) = 0
E

r

variation of energy with angular momentum

 l(0) = 0

E

r

free fall and rocket problem

Fig. 4.7. Kepler problem: angular momentum

With the solution of the planetary problem two Kepler laws have been veri-
fied:

Planetary orbits are ellipses.
The law of areas is valid.

It remains to discuss the third.

4.1.2.4 The third Kepler law. For the discussion of the third law

T 2 ∝ a3 for planets with a > b

a relation between the data of the ellipse and the initial conditions is needed.
The definitions (4.19) and (4.20)

ε2 = 1 − b2

a2
= 1 +

2A2B

γ2M2
−→ b2

a2
= −2A2B

γ2M2
(4.22)

p =
b2

a
=

A2

γM
−→ b2

a
=

A2

γM
(4.23)



4.1 Kepler’s problem 151

yield

1
a

= − 2B
γM

= − 2E0

γMmP
.

The semi-major axis is only determined by the energy (and the masses).
A statement on the period T of an elliptic orbit follows from the law of areas

dF

dt
=

1
2
A .

F stands for the area, while A is given by (4.5). Integration leads to a relation∫
ellipse

dF = πab =
1
2
A

∫ T

0

dt =
1
2
AT

that can be used to derive the third Kepler law

T 2 =
4π2a2

A2
b2 =

4π2a2

A2

(
A2

γM
a

)
=

4π2

γM
a3 . (4.24)

The following remarks can be offered:

1. The period of the planets is determined by the energy. It is independent
of the angular momentum.

2. The constant depends only on the solar mass (and the gravitational con-
stant). This result is quite well confirmed in nature. One finds

T 2

a3

∣∣∣∣
planet

−→ (0.985 − 1.005)
T 2

a3

∣∣∣∣
earth

.

The solar mass can be determined from the data (a, T ) for the planets
within the limits given. The deviation indicated is due to two reasons:
Neglect of the motion of the sun and the ’perturbation’ due to the motion
of neighbouring planets, moons, etc.

4.1.2.5 Motion of the sun. The neglect of the motion of the sun can be
corrected directly. If the system sun-planet (Fig. 4.8) is treated as a two body

 P r
 S r

 r

 P

 S

Fig. 4.8. Kepler problem: two body aspects

problem (and not with the additional assumption of a fixed sun as a one
body problem) the equations of motion
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M r̈S = γ
M mP

r3
r r = rP − rS (4.25)

mPr̈P = −γ
M mP

r3
r (4.26)

have to be addressed. The motion of the centre of gravity

R =
1

mP + M
(mPrP + MrS)

is characterised by

R̈ = 0 −→ Ṙ = const.

The motion of the centre of gravity is, as expected, uniform and therefore
not of interest. The equation responsible for the relative motion is

r̈ = −γ
(mP + M)

r3
r . (4.27)

This equation is not essentially different from the differential equation (4.1) of
the one particle problem. The mass of the sun M in the results of this problem
can simply be replaced by the total mass M + mP in order to incorporate
the motion of the sun. The third Kepler law corrected for the motion of the
sun reads therefore

T 2 =
4π2

γ(M + mP)
a3 . (4.28)

As the mass of the sun is so dominant there is only a small difference with
respect to (4.24). The corrected formula explains, in a reasonable measure,
the variation of the factor of proportionality that has been indicated above.

The motion of the sun itself is best discussed in the centre of mass system,
which is characterised by

R = 0 −→ rS = −mP

M
rP .

The sun moves opposite the planet on a miniature ellipse (due to the factor
−mP/M) according to the two body formulation (Fig. 4.9).

 P

 S

Fig. 4.9. Kepler problem: motion of the sun
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4.1.2.6 Additional remarks. The following remarks conclude the discus-
sion of the Kepler problem:

1. The discussion of the two body problem sun-planet can also be applied to
the system planet-moon. It is possible in this case to extract the mass of
the planet (e.g. of the earth) from the data of the moon (semi-major axis
and period) with the aid of the third Kepler law (see Problem 4.1).

2. The calculation of the motion of all the planets in our solar system in-
cluding the mutual interactions is a much larger task. As already the
three body problem involving the sun and two planets can not be solved
analytically, it is necessary to proceed in a different fashion: in a first
step the partial systems consisting of the sun and one planet are consid-
ered, as indicated above. In a second step the perturbation of the orbit
of each of the planets due to the other planets is calculated in successive
approximations4.

3. The question, whether the 1/r2 - law is correct, can be posed. In order to
answer the question a general force law of the form

F ∝ −rαr (α arbitrary)

has to be considered. The law of areas is valid for each value of the
parameter α. The orbits of the corresponding two body problem can be
calculated. Elliptic orbits are, however, only possible for α = −3 and 0 .
The ellipses are only centred on the focal point for α = −3 . The oscillator
problem with α = 0 does not allow any unbound (comet) orbits. The
observation of elliptic orbits centred on the focal point can be taken as a
proof of the validity of the 1/r2 law for gravitation (see also Probl. 4.2).

4. A direct integration of the basic equation (4.9) of the Kepler problem

t = ±
∫ r

r0

dr′[
2B + 2γ

M

r′
− A2

r′2

]1/2

is possible, though only in the form of a parametric representation
r = r(ψ), t = t(ψ) . The integral

t = ± 1√
2|B|

∫
r′dr′[

−r′2 + γ
Mr′

|B| − A2

2|B|
]1/2

(4.29)

has to be evaluated e.g. for the case of the orbits of planets (with a
negative total energy). The notation is the same as used in the derivation
of (4.9)

B =
E0

mP
A =

l0
mP

.

4 An overview of the more accurate calculation of planetary motion is found in [5]
of the references.
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If the definition

ε =
[
1 − 2A2|B|

γ2M2

]1/2

for the eccentricity and

a =
γM

2|B| b = a
√

1 − ε2 =
A√
2|B| (a > b)

for the semi-major and the semi-minor axes are used, the radicand of the
integral (4.29) can be cast into the form

−r′2 + 2ar′ − b2 = a2ε2 − (r′ − a)2 .

The integral (4.29) takes the form

t = ±
√

a

γM

∫
r′dr′

[a2ε2 − (r′ − a)2]1/2
.

It can be treated with the substitution

(r′ − a) = −aε cosψ dr′ = aε sinψdψ .

The resulting elementary integral can be evaluated directly

t = ±
√

a3

γM

∫
dψ (1 − ε cosψ)

= ±
(√

a3

γM
(ψ − ε sinψ) + const.

)
.

It corresponds, together with the substitution used for the variable r, to
a parametric representation of the function r = r(t) (only the positive
sign is relevant). The initial conditions can, for instance, be chosen so
that const. = 0

r = a(1 − ε cosψ) t =

√
a3

γM
(ψ − ε sinψ) . (4.30)

This choice of the initial condition corresponds to ψ = 0 for t = 0 and
hence to

r(0) = a(1 − ε) = a − e as well as ṙ(0) = 0 .

The second statement follows by use of the chain rule.
An expression for cosϕ can be derived by comparing the parametric repre-
sentation of 1/r (in (4.30)) with the solution (4.15) of the Kepler problem
for an elliptical orbit. The result is

cosϕ = ± (cosψ − ε)
(1 − ε cosψ)
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where the polar coordinates r and ϕ are referred to the focal point. It
can be used to obtain a parametric representation of the Cartesian coor-
dinates of the Kepler ellipses

x = ± aε + r cosϕ = ± a cosψ

y = r sinϕ = a
√

1 − ε2 sinψ = b sinψ .

These equations represent the usual parametric representation of an el-
lipse in a coordinate system with an origin, which divides the separation
of the focal points into equal halves. The sign of the x - coordinate de-
scribes the sense of rotation.
The parameter ψ increases by 2π during a full rotation of the planet on
the ellipse. The equation for the parametric representation of the time
in (4.30) contains therefore explicitly the third Kepler law (4.24). A sim-
ilar representation is possible for parabolic or hyperbolic orbits (see
Probl. 4.5).

5. Of interest (in electrodynamics) is the question of the solution of the
Kepler problem with a repulsive force (the Coulomb force between charges
of the same sign)

F =
α

r3
r, α > 0 .

It is easy to show that only orbits with a positive energy are possible.
The details of these hyperbolae can be obtained from those of the normal
Kepler problem with the replacement of |γ mP M | by −α .

4.1.3 Comets and meteorites

The maximal separation of a planet from the central body is finite. By con-
trast, comets and meteorites can enter the gravitational field of a celestial
body from very far away.

4.1.3.1 Meteorites. The problem of meteorites, that is the free fall of a
body starting at a large distance from the centre of the earth, can be discussed
in the following manner. The potential energy of an object of mass m at points
outside the earth (see (3.90)) is

Ugrav(r) = −γ
mME

r
r ≥ RE ,

if the earth is treated as a sphere with a (homogeneous) mass distribution.
As initial conditions for the free fall the specification

r(0) = r0er v(0) = 0 ,

which in polar coordinates reads

r0 = r0 ϕ0 = arbitrary ṙ0 = 0 ϕ̇0 = 0 ,

may be used. Angular momentum conservation (4.4) leads to the statement



156 4 Dynamics II: Problems of Motion

r(t)2ϕ̇(t) = r2
0ϕ̇0 = l0/m = 0 .

For r(t) > RE �= 0 it follows immediately that ϕ̇(t) = 0 . The object moves
in the radial direction towards the earth for the initial conditions given.

The energy conservation law takes the form (4.21)

1
2
ṙ2 − γ

ME

r
=

E0

mp
= −γ

ME

r0

if the angular momentum is zero. Some simple questions can be answered
directly with the aid of this equation, so for instance: what is the speed, with
which an object hits the earth, if it starts at a very large distance (r0 → ∞)
from rest. The answer, neglecting possible frictional effects, is

vE = [2gRE]1/2 ≈ 40250 km/h .

This follows from
1
2
v2
E − γ

ME

RE
= 0

and the definition (3.94)

g = γ
ME

R2
E

.

It is, on the other hand, necessary to integrate the differential equation (4.8)
in order to calculate the actual time development of the motion. A separation
of variables (the constant A has the value zero)

dr

dt
= ±

[
(2γME)

(
1
r
− 1

r0

)]1/2

,

as well as a rearrangement and integration yields

t = ±
[

r0

2γME

]1/2 ∫ r

r0

[
r′/r0

1 − r′/r0

]1/2

dr′ .

The integral on the right hand side can be taken from a suitable Table of
integrals or evaluated explicitly. With the substitution(

r′

r0

)1/2

= cosα −→ r′ = r0 cos2 α

(reasonable as 0 < r′/r0 ≤ 1) and

dr′ = −2r0 cosα sinα dα

αmax = arccos
√

r/r0 αmin = arccos 1 = 0

it is transformed into

t = ∓
[

2r3
0

γME

]1/2 ∫ αmax

0

[
cos2 α sinα

sinα

]
dα .
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The remaining integral is∫
cos2 αdα =

1
2
(α + cosα sinα)

so that the result after insertion of the integration limits reads

t = ∓
[

r3
0

2γME

]1/2
{

arccos
√

r

r0
+
√

r

r0

√(
1 − r

r0

)}
. (4.31)

Only the positive sign is relevant for t > 0 . This result in the form t = t(r) can
not be resolved analytically in the form r = r(t) . The actual time develop-
ment of the motion of the meteorite can only be extracted by a numerical
inversion. The numerical treatment is illustrated in Fig. 4.10, which shows
t = t(r) for the motion of meteorites. The time, that the object has fallen, can

 E R  r’ 

 t(r’)

 t

 0 r  r
Fig. 4.10. Meteorite problem: Variation of the time of
fall with distance

be read off the graph for each distance RE ≤ r′ ≤ r0 . A table of values of the
functional relation r′ = r′(t) (as accurate as required) or a suitable parametric
representation as suggested in Chap. 4.1.2.6 can be prepared instead of the
graphical representation indicated in the figure. Such tables are used to a
great extent in astronomy.

The result of the meteorite problem (4.31) corresponds to the results of
the simple free fall, if one sets

r0 = RE + h0 r = RE + h

and expands in the parameter h (≤ h0 
 RE).

4.1.3.2 The classical collision problem: orbits of comets. An orbit
of a comet results if a mass (with E0 > 0) moves at a given distance past
a central body (rather than hitting it directly). This collision problem can
be discussed more precisely in the following manner: a mass point m starts
at a great distance r0 → ∞ from a ’heavy’ mass point M with the initial
velocity v0 (Fig. 4.11a). The mass m will, due to the attractive gravitational
interaction, move on a hyperbola. It moves on a straight line, the asymptote
of the hyperbola, if it is sufficiently far from the heavy mass. The (constant)
distance between the asymptote and a parallel line through the centre of M
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(a) (b)

 min r

 m

 a
 b

 ρ

 M

collision geometry

 ϕ
 θ

 M

 m

scattering angle

Fig. 4.11. Comets: collision problem

is called the impact parameter ρ . The mass m passes the mass M at a
minimal distance rmin and completes its orbit moving in the direction of the
second asymptote. The angle between the first asymptote and the x - axis, on
which the mass M is located, is denoted by ϕ . Because of the symmetry of
the hyperbola, a corresponding angle is found between the second asymptote
and the x - axis. The scattering angle θ, the angle e.g. between the second
asymptote and the extension of the first asymptote (Fig. 4.11b) is therefore
θ = π − 2ϕ . The initial conditions stated lead to

E0 =
m

2
v2
0 l0 = mρv0

or alternatively in terms of the parameters A and B of the Kepler problem
to

A = ρv0 B =
v2
0

2
.

The angle ϕ is determined by the parameters a and b of the hyperbola (see
(4.18)) in the form tanϕ = b/a . The parameter of the hyperbola are related
to the initial values of the Kepler problem by (4.22) and (4.23), so that the
relation

tanϕ =
b

a
=

A
√

2B
γM

=
ρv2

0

γM
(4.32)

can be established. This equation allows the determination of the angle ϕ ,
or alternatively the scattering angle θ , via the relation

tanϕ = tan
(

π − θ

2

)
= cot

(
θ

2

)
for a given impact parameter ρ .

The relation (4.32) is also used, though with some modifications, in quan-
tum mechanics. The calculations in terms of classical mechanics and quantum
mechanics lead to the same result for a 1/r potential. A difference arises from
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the fact that the scattering of a single comet is of interest in the classical prob-
lem. In quantum mechanical collision experiments it is not the scattering of
one particle but rather the scattering of a whole beam of particles, which
move towards the collision centre with equal velocity but different impact
parameters (Fig. 4.12). The particles in the beam are scattered under dif-
ferent angles θ , depending on the respective impact parameter. In order to
characterise this situation the concept of the differential cross section dσ
is used.

This quantity is defined in the following way: it is proportional to the
number of particles dN , which are scattered per unit time into a direction
between the angles θ and θ + dθ . The quantity has to be normalized with
respect to the number of particles N , which move in unit time through a
unit area of the beam cross section

dσ =
dN

N
.

The number dN corresponds to the product of N with the area of a circular
ring with the radii ρ and ρ + dρ . This area is 2πρdρ . The differential cross
section has therefore the dimension of an area (Fig. 4.12) and is given by

dσ =
dN

N
= 2πρdρ .

The dependence of the differential cross section on the scattering angle θ is
obtained with the aid of the chain rule as

dσ = 2πρ(θ)
∣∣∣dρ

dθ

∣∣∣dθ .

The absolute value of the derivative has to be used to obtain a positive
quantity. Together with the relation (4.32) in the form

ρ =
γM

v2
0

cot
θ

2
,

the differential cross section is given by the formula

dσ = π
(γM)2

v4
0

cos(θ/2)
sin3(θ/2)

dθ .

 M

 Θ d
 σ d

Fig. 4.12. Differential cross section: geometry
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Usually, the differential cross section is, because of the cylinder symmetry of
the collision system, referred to the solid angle5 dΩ

dΩ = 2π sin θ dθ = 4π sin(θ/2) cos(θ/2) dθ ,

so that the final form of the differential cross section is

dσ =
(

γM

2v2
0

)2 dΩ

sin4 (θ/2)
. (4.33)

This is the Rutherford formula, which has played an important role in
the development of quantum mechanics. It has been used, to analyse the
scattering of α - particles from Gold nuclei, resulting in a first model of the
atom (see Vol. 3). The motion of the α - particles is governed by Coulomb
(3.16) rather than gravitational forces. The two forces obey a comparable
force law, so that the gravitational factor γM can be replaced by the electric
factor ±kq2/m . Rutherford’s formula is valid for attractive (equal charges)
as well as repulsive forces (opposite charges).

It should be kept in mind that Rutherford’s formula has been derived with
respect to the centre of mass system (compare Chap. 4.1.2.5). For the inter-
pretation of experiments in a laboratory system (in which the mass M is orig-
inally at rest) a kinematical transformation has to be applied ( Probl. 4.10).

4.2 Oscillator problems

The harmonic oscillator features in many areas of physics (from mechanics to
quantum field theory). The reason for this popularity can be pointed out di-
rectly. Consider (Fig. 4.13a) a potential energy function U(x) of a mass point
(for simplicity in one space dimension), which exhibits a definite minimum.
It is always possible to choose a coordinate system, so that the origin and the
point with the minimum coincide and that U(0) = 0 . If the kinetic energy
of this mass point in the potential well is smaller than the potential energy
of neighbouring maxima of U(x) , the mass will only move within a limited
range around the origin. The Taylor expansion of the potential energy about
the point x = 0 is

U(x) = U(0) +
dU

dx

∣∣∣∣
0

x +
1
2!

d2U

dx2

∣∣∣∣
0

x2 +
1
3!

d3U

dx3

∣∣∣∣
0

x3 . . . .

The first and the second term vanish by construction. The third term is
positive, if x = 0 is a minimal point. Therefore one may write

U(x) = a2x
2 + a3x

3 + a4x
4 + . . . a2 > 0 .

For a potential well, which is, as assumed in Fig. 4.13b, symmetric with
respect to x = 0 , all odd powers of the expansion vanish because of U(−x) =
U(x). The potential function in the vicinity of the origin is
5 This is the solid angle between two cones with the opening angles θ and θ + dθ .
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(a) (b)

 T

 x

 U(x)

general

 U(x)

 2
 2 a  x  +  4 a  x

 2
 2 a  x

symmetric, U(0) = 0

Fig. 4.13. One dimensional potential wells

U(x) = a2x
2 + a4x

4 + . . . .

The Taylor expansion indicates, that every potential well can in first approx-
imation (that is for small displacements from the equilibrium position) be
treated as a harmonic oscillator. This remark can be expressed in a different
fashion. The corresponding force acting on the mass point is

F (x) = −dU

dx
= −2a2x − 3a3x

2 . . . .

Every system with a potential well is, in lowest approximation, charac-
terised by a restoring force according to Hooke’s law. The stability that is
found in nature points towards the omnipresence of such restoring forces. Dif-
ferent oscillating systems as pendulums, oscillating liquid drops, systems of
springs, tuning forks, or musical instruments may be discussed in mechanics.
In electrodynamics corresponding systems are oscillating electric circuits or
transmitting antennae. Oscillating atoms in molecules can, also in first ap-
proximation, be considered as harmonic quantum oscillators (although they
differ considerably from classical oscillators).

Higher order contributions in the Taylor expansion have to be considered
for larger displacements. The oscillations become anharmonic. If the kinetic
energy of a mass point is too large, the mass will leave the potential well. A
discussion in terms of a power series is in this case not adequate at all. An
explicit first example for a classical oscillating system is the mathematical
pendulum.

4.2.1 The mathematical pendulum

A mathematical pendulum consists of a fictitious rod of length l, which can
rotate about a centre of suspension. At the end of the rod is a mass point
m. ’Fictitious’ means that the rod is massless and absolutely rigid. The mass
point is subjected to the following forces (Fig. 4.14a)

• the gravity mg.
• the (unknown) constraining force due to the rod S.
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(a) (b) (c)

 mg
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forces

 ϕ  ϕ e
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 m

 l

coordinates

 ϕ  ϕ e

 r e

 mg

 S

 m

 l

decomposition of the forces

Fig. 4.14. Mathematical pendulum

If the initial conditions are chosen accordingly, the pendulum will move
in a plane (for arbitrary initial conditions the pendulum is spherical, see
Chap. 5.3.2). Polar coordinates (Fig. 4.14b) are an appropriate choice for
the discussion of the motion on the circle that results from the constraint.
The forces which act on the mass point are decomposed into a radial and an
angular component (Fig. 4.14c)

Fr = −S + mg cosϕ Fϕ = −mg sinϕ , (4.34)

the corresponding decomposition of the acceleration vector (see (2.60)) is

ar = r̈ − rϕ̇2 aϕ = rϕ̈ + 2ṙϕ̇ .

A rigid rod is characterised by r = l and ṙ = 0, r̈ = 0 . The decomposition
of the vectorial equation of motion mr̈ = F is therefore

azimuthal component : mlϕ̈ = −mg sinϕ

radial component : −mlϕ̇2 = −S + mg cosϕ .
(4.35)

The time development of the angle ϕ (with the initial condition ϕ(0) = ϕ0,
ϕ̇(0) = ω0) is fully determined by the first equation. Once the solution of
this differential equation has been obtained, the constraining force S can be
determined from the second equation

S(t) = mlϕ̇(t)2 + mg cosϕ(t) .

Obviously the relation S = mg cosϕ, which might be expected from a static
argument, is not valid.

4.2.1.1 Solution of the differential equation of the pendulum. The
differential equation (4.35)

ϕ̈ +
g

l
sinϕ = 0 (4.36)

does not correspond to the differential equation of the harmonic oscillator.
Harmonic oscillations with the solution

ϕ(t) = α sin(ωt + β)

are only found for small deflections with the approximation
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sinϕ ≈ ϕ

and the differential equation

ϕ̈ + ω2ϕ = 0 .

The angular frequency of the mathematical pendulum is ω =
√

g/l in this
limit. The period is

T =
2π
ω

= 2π

√
l

g
. (4.37)

The period depends, in this case, only on the length of the pendulum and
the constant g and not on the magnitude of the (small) initial displacement.
Pendulums are (nearly) isochronous for small deflections. The manufacturers
of pendulum clocks rely on this fact.

The solution of the full differential equation (4.36) with the form ϕ̈ = F (ϕ)
requires (see Math.Chap. 2.2.1) the substitution

ϕ̇ = γ ϕ̈ =
dγ

dt
=

dγ

dϕ

dϕ

dt
= γ

dγ

dϕ
.

This leads to

γ
dγ

dϕ
= −ω2 sinϕ

and after integration via a separation of variables to

1
2
ϕ̇2(t) − 1

2
ϕ̇2(0) = ω2(cosϕ(t) − cosϕ(0)) . (4.38)

The original variable has been reintroduced in the result quoted. It is (up to
a factor ml2) equivalent to the law of energy conservation. The constraining
force does not contribute to the energy balance, as the vector S is perpendic-
ular to the instantaneous displacement dr for each instant of time. It would
have been possible to begin the discussion directly with the statement

m

2
v2 + mgh = E0 ,

followed by an introduction of the geometry of the problem at this point.
The solution of (4.38) shall be discussed here only for the special initial

conditions

ϕ(0) = 0 ϕ̇(0) = ω0 .

The mass is at the lowest point at the time t = 0 and starts with the angular
velocity ω0 . With respect to the initial velocity two possibilities have to be
distinguished:
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(1) ω0 is large enough, so that the pendulum rotates about the centre of
suspension. In this case the differential equation (second integration)

ϕ̇ = ± [
2ω2(cosϕ − 1) + ω2

0

]1/2

has to be solved. The signs correspond to a rotation in or against the
sense of the clock.

(2) ω0 is sufficiently small, so that the pendulum only reaches a maximum
deflection ϕm (0 ≤ ϕm ≤ π). The turning point is characterised by ϕ̇ = 0 ,
so that the energy principle (4.38) yields

−ω2
0 = 2ω2(cosϕm − 1) .

This relation can be used to eliminate ω0 from the differential equation
(4.38)

ϕ̇ = ±
√

2 ω [cosϕ − cosϕm]1/2
. (4.39)

The change of the direction of the motion during the oscillation of the
pendulum must be reproduced by an appropriate handling of the sign in
(4.39). The positive sign has to be used if the angular velocity is ϕ̇ ≥ 0 for
the first oscillatory phase (0 −→ ϕm). In the next phase (ϕm −→ −ϕm)
the negative sign characterises the back-swinging mass. The positive sign
has to be employed again in the last phase before the completion of the
first cycle.

Only the oscillatory motion (for a discussion of the rotating pendulum,
see Probl. 4.12) with a small value of ω0 will be discussed in some detail6.
The motion of the pendulum is periodic in this case, but not harmonic. The
solution of (4.39) for the four phases of the pendulum can be obtained with
a separation of variables as∫ τ1

0

dt =
1√
2 ω

∫ ϕm

0

dϕ′

[cosϕ′ − cosϕm]1/2

∫ τ2

τ1

dt = − 1√
2 ω

∫ 0

ϕm

dϕ′

[cosϕ′ − cosϕm]1/2

=
1√
2 ω

∫ ϕm

0

dϕ′

[cosϕ′ − cosϕm]1/2

∫ τ3

τ2

dt = − 1√
2 ω

∫ −ϕm

0

dϕ′

[cosϕ′ − cosϕm]1/2

=
1√
2 ω

∫ ϕm

0

dϕ′

[cosϕ′ − cosϕm]1/2

6 An additional aspect of the motion of the mathematical pendulum is discussed
in Chap. 5.4.3 under the heading ’Looking into phase space’.
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τ3

dt =
1√
2 ω

∫ 0

−ϕm

dϕ′

[cosϕ′ − cosϕm]1/2

=
1√
2 ω

∫ ϕm

0

dϕ′

[cosϕ′ − cosϕm]1/2
.

The period of oscillation is the same for all four phases

τ1 = τ2 − τ1 = τ3 − τ2 = τ4 − τ3 .

Integration of (4.39) up to the time t ≤ τ1 gives

ωt =
1√
2

∫ ϕ

0

dϕ′

[cosϕ′ − cosϕm]1/2
0 ≤ ϕ ≤ ϕm ≤ π . (4.40)

The integral on the right hand side cannot be evaluated in an elemen-
tary fashion. It is an incomplete elliptic integral of the first kind (
Math.Chap. 4.3.4). A normal representation of this special function is ob-
tained with the following substitution

1. Use cosϕ = 1 − 2 sin2(ϕ/2) and set k = sin(ϕm/2) to obtain

cosϕ − cosϕm = 2(k2 − sin2(ϕ/2)) .

2. Substitute sin(ϕ/2) = k sin s. The limits are then

ϕ = 0 → s = 0 , ϕ = ϕm → s = π/2 .

The details of the substitution involve
1
2

cos(ϕ/2) dϕ = k cos s ds

dϕ =
2k cos s[

1 − k2 sin2 s
]1/2

ds .

The integrand is

1

[cosϕ − cosϕm]1/2
=

1√
2

1[
k2 − k2 sin2 s

]1/2
=

1√
2 k cos s

.

If everything is put together, one arrives at

ωt =
∫ s

0

ds′[
1 − k2 sin2 s′

]1/2
≡ F (s, k) . (4.41)

4.2.1.2 Details of the motion of the pendulum. The elliptic integral
F (s, k) , or the form F (s, ϕm) , is listed in Tables. A graphical representation
of the function F (s) for the range 0 ≤ s ≤ π/2 and the dependence on
the parameter ϕm = 2arcsin(k) is shown in Fig. 4.15. The different curves
correspond to the values ϕm = 0◦, 60◦, 90◦, 120◦, 150◦, 180◦ (in the order
given, with the lowest curve for ϕm = 0◦). Inversion of these numerical results
yields, according to (4.41), the function ϕ(t) for a given value of ϕm .
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0
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0 1s
Fig. 4.15. The elliptic integral F (s, ϕm) for different max-
imal deflections ϕm

The time for the duration of a full cycle T can, as a consequence of the
periodicity, be calculated via the period of a quarter oscillation

T =
4
ω

∫ π/2

0

ds′[
1 − k2 sin2 s′

]1/2
=

4
ω

F (π/2, k) . (4.42)

The integral with the upper limit π/2 is a complete elliptic integral. Its
values could be taken from Fig. 4.15 for s = π/2 . This integral is

F (π/2, 0) =
∫ π/2

0

ds′ =
π

2

in the extreme limit k = 0 which corresponds to ϕm = 0 , This leads to
T = 2π/ω , the period of the pendulum in the harmonic limit (4.37).

The function F (π/2, k) depends only weakly on k for small values of k ,
so that this approximation is (as seen in Table 4.2) acceptable for a rather
wide range of maximal deflections. As a consequence of the weak dependence

Table 4.2. Variation of the complete elliptic integrals F (π/2, k) with the maximal
deflection k = sin ϕm/2

ϕm 0◦ 20◦ 40◦ 60◦ 90◦

F (π/2, k) 1.571 1.583 1.620 1.686 1.854

of the elliptic integral on the variable k a series expansion offers itself. The
binomial series

[1 − x]−1/2 = 1 +
1
2
x +

3
8
x2 + . . .

results in the present situation in[
1 − k2 sin2 s′

]−1/2
= 1 +

1
2
k2 sin2 s′ +

3
8
k4 sin4 s′ + . . . .
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A term by term integration using∫ π/2

0

sin2n s′ds′ =
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
π

2
n ≥ 1 , (4.43)

which can be obtained via a recursion relation (see D.tail 4.2), leads to an
expansion for the period T . The corrections to fourth order in k are

T = TO(k4) + · · · TO(k4) =
2π
ω

[
1 +

1
4
k2 +

9
64

k4

]
. (4.44)

The period depends on the maximum deflection. The mathematical pendulum
is not isochronous. An idea of the order of magnitude of the correction and of
the quality of the approximation up to fourth order is shown in Table 4.3. A

Table 4.3. Comparison of the exact period of the mathematical pendulum with a
fourth order approximation

ϕm 0◦ 20◦ 40◦ 60◦ 90◦

k = sin ϕm/2 0 0.174 0.342 0.500 0.707

ω

2π
TO(k4) 1 1.0077 1.0312 1.0713 1.1602

ω

2π
Texact 1 1.0077 1.0313 1.0732 1.1803

deviation of 18% from the harmonic limit is found for a maximum deflection
of ϕm = 90◦ . The approximation (4.44) is accurate to 1.7 %. The correction
of the harmonic limit is used for the construction of mechanical clocks with a
high precession (the old astronomical clocks) and for a precise measurement
of the gravitational acceleration g using the mathematical pendulum.

The limit k = 1 → ϕm = π with

F (π/2, 1) =
∫ π/2

0

ds′

cos s′
→ ∞

is also of interest. The process takes an infinite amount of time. The initial
angular velocity that is required, so that the pendulum just moves to the
upright position without turning over, is ω0 = ±2ω = ±2

√
g/l .

The constraining force S is given by the radial equation (4.35)

S(t) = mg cosϕ(t) + mlϕ̇2(t) .

It is equal to the sum of the radial component of the gravitational force
and the centrifugal force. A rather complicated constraining force is required
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in order to keep the mass on the circle. The dependence of the constrain-
ing force on the deflection ϕ can be obtained by eliminating the centrifugal
contribution with the energy law (4.38)

ϕ̇2 =
2g
l

(cosϕ − cosϕm) .

This results in

S = mg(3 cosϕ − 2 cosϕm) . (4.45)

A positive value of S indicates that the (point) mass of the pendulum is
pulled in the radial direction by the other two forces. This is always the case

 S/mg

 1

 2

 o 30 o –30  o 60 o –60
Fig. 4.16. Variation of the guiding force with the de-
flection for ϕm = 60◦

for ϕm ≤ 90◦ , as e.g. for the maximal deflection ϕm = 60◦ which is illustrated
in Fig. 4.16. The function S(ϕ) can be negative for ϕm > 90◦ . Figure 4.17a
shows the function S(ϕ) for ϕm = 180◦. The constraining force is negative
for deflections larger than 132◦ (cosϕ = −2/3). The gravitational component
becomes negative and dominates over the positive centrifugal component, so
that the mass point would be pulled inwards if the resulting force were not
compensated by the rigid rod. The mass will not stay on the circle if it is
attached to a string or a flexible wire rather than a rod. A string can only
counteract a force in the outward radial direction. The string will start to
collapse as soon as the vector sum of the gravitational and centrifugal forces
points in the direction of the point of suspension (Fig. 4.17b).

Additional types of pendulums (or forms of oscillations) could be dis-
cussed under the present heading, so e.g.:

1. The spherical pendulum, which results for general initial conditions, so
that the motion is not restricted to a plane (see Chap. 5.3.2).

2. Pendulums with special guiding systems, as e.g. Huygen’s cycloid pendu-
lum, which swings in a isochronous manner independent of the maximum
deflection ( Probl. 4.13).

3. The physical pendulum, the rotation of a rigid body about an arbitrary
axis (see Chap. 6.3.7).

Some of these examples will be analysed after the introduction of the La-
grangian formulation in Chap. 5. A more direct variant of the (one dimen-
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the function S(ϕ)
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illustration of the motion
for a pendulum with a string

Fig. 4.17. Variation of the guiding force with the deflection for ϕm = 180◦

sional) oscillator problem, which is relevant for the correct operation of some
measuring devices, is the damped harmonic oscillator.

4.2.2 The damped harmonic oscillator

The one dimensional differential equation to be discussed in this section is

mẍ + bẋ + kx = 0 . (4.46)

The second term is a frictional force (Stokes’ law: FS = −bẋ), the third rep-
resents the linear restoring force (Hooke’s law: FH = −kx). The total force
is not conservative so that energy is not conserved (see the discussion on
page 172). The solution of the homogeneous linear differential equation of
second order does not present any difficulties. Introducing the usual abbre-
viations

β =
1
2

b

m
ω0 =

√
k

m
,

the differential equations reads

ẍ + 2βẋ + ω2
0x = 0 . (4.47)

The ansatz with an exponential function x = eα t leads to the characteristic
equation

α2 + 2βα + ω2
0 = 0

with the solution

α1,2 = −β ± [
β2 − ω2

0

]1/2
. (4.48)

This result shows that three physically different solutions have to be distin-
guished: weak and strong damping as well as the aperiodic limit.
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4.2.2.1 Discussion of the types of motion. The first is the limit of
weak damping which is characterised by ω2

0 > β2 . The radicand in (4.48) is
negative, so that the roots of the characteristic equation are complex

α1,2 = −β ± iω1 (ω2
1 = ω2

0 − β2) .

The basic features of complex numbers and functions of complex variables are
introduced in Math.Chap. 7.

The general solution can be written as

x(t) = e−βt
{
C1eiω1t + C2e−iω1t

}
or alternatively in real form

x(t) = Ae−βt cos(ω1t + δ) . (4.49)

The two integration constants are determined by the initial conditions. For
instance, the initial conditions

x(0) = 0 ẋ(0) = v0 (4.50)

give the explicit solution (Fig. 4.18)

x(t) =
v0

ω1
e−βt sinω1t ,

 t

x

Fig. 4.18. The damped harmonic oscillator: weak
damping

which represents a sinusoidal oscillation with the frequency ω1 , which is
damped by a decaying exponential factor. The passage through the equilib-
rium position x = 0 takes place for times with ω1t = nπ (n = 0,±1,±2, . . .).
The oscillation is periodic in spite of the damping. The local maxima and
minima correspond to points for which the the solution and the exponential
envelopes coincide (for t > 0).

The case of the double root β2 = ω2
0 is characterised by a specific ratio of

the coefficients of the frictional and restoring forces. This case is called the
aperiodic limit. The general solution is here (see Math.Chap. 2.2.2)

x(t) = (C1 + C2t)e−βt . (4.51)

The initial conditions (4.50) leads to
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x(t) = v0te−βt .

This function describes a displacement, that increases (initially linearly) up
to the time t = 1/β and returns, after changing the direction of motion, in
an exponential fashion to the equilibrium position (Fig. 4.19).

 1/β  t

x

Fig. 4.19. The damped harmonic oscillator: aperi-
odic limit

Strong damping is characterised by the inequality ω2
0 < β2 . The roots of

the characteristic equation are real in this case. As β ≥
√

β2 − ω2
0 both α1

and α2 are negative numbers. The general solution

x(t) = C1eα1t + C2eα2t α1 , α2 < 0

is a superposition of two terms that decrease exponentially with time. The
motion is therefore no oscillation (it is often termed a creeping motion).
The special solution for the initial condition (4.50), expressed in terms of
hyperbolic rather than exponential functions

sinhx =
1
2
(ex − e−x) ,

is

x(t) =
v0

[β2 − ω2
0 ]1/2

e−βt sinh([β2 − ω2
0 ]1/2 t) . (4.52)

The corresponding x(t) - curve (Fig. 4.20) is similar to the curve obtained
in the aperiodic limit: a displacement up to a maximum, which is followed

 t

x

Fig. 4.20. The damped harmonic oscillator: strong
damping

by an exponential return to the equilibrium position. The return to the equi-
librium position is faster in the aperiodic limit.

The energy situation for the damped oscillator can be analysed as follows:
multiply the equation of motion (4.46) by ẋ and find

mẍẋ + kxẋ = −bẋ2 .
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The left hand side can be reformulated
d
dt

(
m

2
ẋ2 +

k

2
x2

)
= −bẋ2 .

An interpretation of this result could use the picture that the damped oscil-
lator corresponds to a mass-spring system which is embedded in a viscous
fluid (Fig. 4.21). The expressions in the brackets are the kinetic energy of

 k

 m

Fig. 4.21. The damped harmonic oscillator: total sys-
tem

the mass and the potential energy stored in the spring. The change of the
total mechanical energy of the mass-spring system with time is negative. The
mechanical energy decreases with time according to ( Probl. 4.14)

Emech(t) = Emech(0) − b

∫ t

0

ẋ(t′)2dt′ .

The mechanical energy, which is lost by the mass-spring system, is converted
to another form of energy, mainly heat, of the whole mass-spring-fluid sys-
tem. Energy conservation of the total system (provided it is isolated from its
surroundings) can nonetheless be formulated as

d
dt

(
Emech(t) + Q(t)

)
= 0

where Q(t) is the (time changing) heat content of the total system.

Forced oscillations constitute another variant of the oscillator problem.
Such oscillations can be characterised by the differential equation

mẍ + bẋ + kx = F (t)

or

ẍ + 2βẋ + ω2
0x = f(t) f = F/m . (4.53)

The quantity ω0 is the eigenfrequency of the system. The mass-spring
system is subjected to an additional, time dependent external force. Both,
the case of free oscillations (β = 0) and damped oscillations (β �= 0) can be
considered. A simple example for an external force is a harmonic force.
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4.2.3 Forced oscillations: harmonic restoring forces

The external force might e.g. be specified in the form

f(t) = γ cosωt . (4.54)

The oscillating mass is driven in a periodic manner with the external fre-
quency f = ω/2π .

The solution of the inhomogeneous differential equation (4.53) can be
written in the form ( Math.Chap. 2.2.2)

x(t) = xhom(C1, C2, t) + xpart(t) .

The general solution of the homogeneous equation has been discussed in the
previous section, Chap. 4.2.2. The particular solution of the inhomogeneous
differential equation for the simple cosinusoidal force is obtained with the
ansatz

xpart(t) = A cosωt + B sinωt .

The method of the ’variation of the constant’ could be applied for the deter-
mination of the parameters A and B but this is not necessary in the present
case. It is sufficient to insert the ansatz into the differential equation using

ẋpart = −Aω sinωt + Bω cosωt ẍpart = −Aω2 cosωt − Bω2 sinωt .

Comparison of the coefficients in the result

cosωt
{−Aω2 + 2βBω + Aω2

0

}
+ sinωt

{−Bω2 − 2βAω + Bω2
0

}
= γ cosωt

leads to a system of linear equations

(−2βω)A + (ω2
0 − ω2)B = 0

(ω2
0 − ω2)A + (2βω)B = γ .

The solution is

A =
γ(ω2

0 − ω2)
[(ω2

0 − ω2)2 + 4β2ω2]
B =

2βγω

[(ω2
0 − ω2)2 + 4β2ω2]

. (4.55)

It is often useful to employ the form

xpart = a cos(ωt − ϕ)

(amplitude a and phase ϕ) for the special solution. The standard conversion
formulae

a = [A2 + B2]1/2

cosϕ =
A√

A2 + B2
sinϕ =

B√
A2 + B2

tanϕ =
B

A

yield directly
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a =
γ

[(ω2
0 − ω2)2 + 4β2ω2]1/2

(4.56)

tanϕ =
2βω

(ω2
0 − ω2)

. (4.57)

The phase is independent of the strength of the external force.
The following statements apply to the total solution

x(t) = xhom(C1, C2, t) + xpart(t) .

• The integration constants C1 and C2 of the total solution are determined
by the initial conditions. The final form of the solution can turn out to be
quite complicated.

• The second term, the particular solution, will dominate for large times if
the homogeneous solution describes an oscillation, which is damped expo-
nentially

lim
t large

x(t) = xpart(t) if lim
t large

xhom(t) = 0 .

The motion follows the external force

xpart(t) = a cos(ωt − ϕ)

after a more complicated transient process. This result shows that the
oscillation does not follow the external force directly, but lags behind with
the phase difference ϕ.

The particular solution is given by

a =
γ

|ω2
0 − ω2| and ϕ = 0

for the case of a forced oscillation without damping. The absolute value of
the denominator has to be used, as the amplitude is a positive quantity. The
general solution can then be written as

x(t) = a0 cos(ω0t − δ0) + a(γ, ω, ω0) cosωt .

The quantities a0 and δ0 are the integration constants. The solution rep-
resents a superposition of two harmonic oscillations, one with the eigenfre-
quency ω0 , the other with the frequency ω of the external force. A particular
situation is found for the initial conditions

x(0) = 0 ẋ(0) = 0 .

The mass would not move in this case without an external force. The inte-
gration constants are obtained from

a0 cos δ0 + a = 0

{−a0 ω0 sin(ω0t − δ0) − aω sinωt}t=0 = a0 ω0 sin δ0 = 0 ,
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as

δ0 = 0 and a0 = −a

so that the total solution is

x(t) = a (cosωt − cosω0t) .

4.2.3.1 Examples of forced oscillations. The multitude of patterns,
which can be obtained by the superposition of two cosinusoidal oscillations,
is illustrated with two examples.

• The amplitude has the value a = γ/3ω , if the eigenfrequency of the system
is twice as large as the frequency of the external force ω0 = 2ω . The grey
curves in Fig. 4.22 show the individual oscillations: the curve cosωt and
a curve, which oscillates with double the frequency. Addition leads to the
black curve. The resulting motion is periodic (the pattern is repeated) but

 2π π

  x

 ω  t

 ω -cos 2   t

 ω cos   t

Fig. 4.22. Forced oscillation with a harmonic
force: a particular solution for ω0 = 2 ω

not harmonic. The maximum displacement in the negative x - direction is
twice as large as the maximum displacement in the positive direction.

• The eigenfrequency differs only slightly from the frequency of the external
force

ω0 = ω + Δω with ω � Δω > 0 .

The amplitude is

a =
γ

(2ωΔω + Δω2)
≈ γ

2ωΔω

in this case. The amplitude can be very large if Δω is very small. The
difference of the two cosine functions can be approximated by

cosωt − cosω0t = cosωt − cosωt cosΔωt + sinωt sinΔωt

≈ cosωt − cosωt + (Δωt) sinωt

= (Δωt) sinωt + O((Δωt)2)

as long as the condition Δω t < 1 is satisfied. The result is then

x(t) ≈ γ

2ω
t sinωt valid for Δωt < 1 .
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This equation describes (Fig. 4.23a) a sinusoidal oscillation between the en-
velopes ± γ t/(2ω) . The amplitude can, for a given initial situation, attain
very large values. This phenomena is called a resonance.

This behaviour is a consequence of the form of the amplitude

a(ω) =
γ

|ω2
0 − ω2| .

The dependence of this function on the external frequency ω is shown in
Fig. 4.23b. The function a(ω) is singular for ω = ω0. This singularity is caused

(a) (b)

 ω t

x

displacement as function
of time

 a(  ) ω

 o ω  ω

amplitude as function
of the angular frequency

Fig. 4.23. Resonance catastrophe: undamped oscillator

by the strong coupling of the natural oscillation and the external oscillation.
The system is able to follow the enforced oscillation the better the closer the
external frequency ω approaches the eigenfrequency ω0 . The amplitude is
(formally) infinite, if the two frequencies are equal. However, the functional
form of the restoring force according to Hooke’s law is only valid for small
displacements. A more realistic representation of the restoring force, valid
for larger displacements, will have to be used for a proper description of
’resonance catastrophes’.

Resonance catastrophes of mechanical systems, which have been subjected
to periodic forces, do indeed occur. A very dramatic example is the collapse
of the Tacoma bridge in the vicinity of Seattle (USA) during the forties of
the 20th century. There exists a short film, which shows that the bridge (a
suspension bridge) is brought into a resonance condition by periodic gusts
of wind. The displacements of the bridge (and the resulting torsion) were so
strong that it collapsed.

The behaviour of the amplitude function a(ω) well beyond the resonance
frequency is a −→ 0 for ω � ω0 . The system is, due to its inertia, not able
to follow the wild external oscillations, and does not respond to them.

4.2.3.2 Detailed discussion of the resonance phenomenon. The am-
plitude function (4.56) for a damped oscillator (β �= 0)
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a(ω) =
γ

[(ω2
0 − ω2)2 + 4β2ω2]1/2

(4.58)

is plotted in (Fig. 4.24). It starts with the value γ/ω2
0 for ω = 0 . The am-

plitude grows with ω also in this case, but remains finite. The function a(ω)

 max a

 ω

 a

 2
 o ω

 γ

 R ω

 Δ ω

Fig. 4.24. Resonance: amplitude as function of angu-
lar frequency (damping)

has a maximum at the position

ωR =
[
ω2

0 − 2β2
]1/2

(4.59)

which can be determined from the condition
da

dω
= − 2ωγ

[(ω2
0 − ω2)2 + 4β2ω2]3/2

{
ω2

0 − ω2 − 2β2
}

= 0 .

The position of the resonance is shifted to lower values compared to the
undamped case. The function a(ω) decreases beyond the point of resonance,
finally as 1/ω2. The structure of the resonance behaviour can (roughly) be
characterised by the following features:

1. the resonance frequency ωR .
2. the maximal amplitude

a(ωR) = amax =
γ

2β(ω2
0 − β2)1/2

. (4.60)

3. the half width or full width at half maximum

Δω1/2 = ω
(amax

2

)
above

− ω
(amax

2

)
below

. (4.61)

This corresponds to an interval around the resonance position ωR be-
tween points for which the amplitude reaches half the maximum value
(Fig. 4.24). An explicit expression for the half width as a function of β can
be given ( D.tail 4.3). Usually an estimate is sufficient. For instance, the
approximation Δω1/2 ≈ 2

√
3β can be used in the case of weak damping

(ω0 > β).

The variation of the resonance curves with the degree of damping is illustrated
in Fig. 4.25. The relevant parameter is the quality factor
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 Q = 0

oo Q = 

 ω

 a

Fig. 4.25. Variation of the resonance curves with the
quality factor

Q =
ωR

2β
=

√
ω2

0 − 2β2

2β
. (4.62)

The value Q → ∞ corresponds to vanishing damping (β → 0). The maxi-
mum is shifted slowly towards smaller values of ω , as the damping increases.
The maximum value of the amplitude decreases and the resonance structure
becomes wider. The resonance position is hardly recognisable for Q = 1, it
cannot be noticed at all for Q = 0 (corresponding to ω0 =

√
2β).

The phase function (4.57)

tanϕ(ω) =
2βω

ω2
0 − ω2

respectively ϕ(ω) = arctan
(

2βω

ω2
0 − ω2

)
also shows a characteristic resonance pattern (Fig. 4.26). The function

 o ω
 ω

 ϕ tan

Fig. 4.26. The phase function tan ϕ(ω)

tanϕ(ω) begins at the value 0 for ω = 0 . It increases with increasing ω
and becomes infinite for ω → ω0 . Beyond this point, the function jumps
to the value −∞ and approaches the value tanϕ = 0 from below for larger
ω -values. The corresponding behaviour of the phase angle ϕ(ω) is indicated
in Fig. 4.27. The angle ϕ(ω) increases from zero to the value π/2 for ω = ω0

and reaches the value π for large values of ω . The variation of the phase
function with the quality factor Q can be described as follows: the transition
through the position ω0 is rather flat for strong friction (Q small). The larger
Q becomes (the smaller the friction becomes) the steeper is the step from
ϕ = 0 to ϕ = π . In the limit Q → ∞ (no friction) the behaviour is given by
a step function.
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 o o Q
small Q

 o ω  ω

 ϕ

Fig. 4.27. Variation of ϕ with the quality factor

The total solution

x(t) = xhom(C1, C2, t) + a(ω) cos(ωt − ϕ(ω))

(e.g. for the initial condition x(0) = 0, ẋ(0) = 0, see Probl. 4.15) is rather
complicated in the transient phase. Damping effects (if present) finally lead
to a solution of the form

lim
t large

x(t) = a cos(ωt − ϕ) .

The mass point oscillates with the same frequency as the external force.
The amplitude a expresses how strongly the system reacts to the external
excitation. It is always proportional to γ , that is the strength of the external
force. The phase describes in how far the mass point can follow the excitation.
If the frequency ω is small, so is ϕ(ω) . The oscillation follows (after the built-
up) the external force without a substantial retardation. The phase difference
is π/2 (independent of the degree of damping) for ω = ω0. The mass oscillates
for this value of ω with a sine function if it is driven by a cosine function.
The phase difference is π for large values of ω . The mass oscillates (with a
small amplitude) in a direction opposing the external force.

The solution of the forced, damped oscillator problem plays also a role
in electrodynamics (see Vol. 2). An electric circuit (Fig. 4.28) consisting of
an AC source (U), a coil (with the inductance L), a condenser (with the
capacity C) and a resistance (R) is an oscillating electric circuit. The current

 U(t)  C

 R

 L

Fig. 4.28. Oscillating electric circuit

i(t) , which flows through such a circuit, is characterised by the differential
equation

L
d2i

dt2
+ R

di

dt
+

i

C
=

dU

dt
.
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The solutions of this differential equation correspond, independent of the
interpretation of the individual terms, exactly to those of the mechanical
oscillator discussed above.

4.2.4 Forced oscillations: general excitations

The discussion of the response of a mass-spring system to a harmonic ex-
citation has to be continued with the question: how can a solution of the
differential equation

aẍ + bẋ + cx = F (t) (4.63)

be obtained for a general external force F (t)? The answer to this question
is based on the principle of superposition which can be formulated in the
following way

If the external force can be decomposed in the form

F (t) =
N∑

n=0

Fn(t)

and if xn(t) is a particular solution of the differential

equation

aẍn + bẋn + cxn = Fn(t) ,

then xpart(t) =
∑N

n=0 xn(t) is a particular solution of

the differential equation

aẍ + bẋ + cx = F (t) .

The proof of this statement is simple. Insert xpart into the complete dif-
ferential equation, sort the right hand and the left hand side and use the
assumptions. The principle of superposition allows the combination of par-
ticular solutions of linear, inhomogeneous differential equations with a more
complicated inhomogeneous term from simpler constituents.

The theorem is (under appropriate conditions, see Math.Chap. 1.3.4)
also valid in the limit N → ∞ so that

F (t) =
∞∑

n=0

Fn(t) xpart(t) =
∞∑

n=0

xn(t) .

One condition, which has to be satisfied, says: the two series of functions have
to converge absolutely and uniformly (in an interval).

This form of the theorem offers the possibility to consider more exotic,
periodic excitations, as e.g. different ’saw tooth’ forces (Fig. 4.29a) or a force
that is composed of sections of parabolae (Fig. 4.29b). The periodic func-
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(a) (b)

 F(t)

 t

 F(t)

 t

 T

 T

by a saw tooth force

 T
 F(t)

 t

by a force composed of sections of a parabola

Fig. 4.29. Periodic excitations (with period T )

tions in these examples are continuous but not continuously differentiable.
Excitations of such forms are used e.g. to model pulses in electro-technical
applications.

For a representation of such periodic functions the theory of Fourier
series has to be used. Periodic functions are represented in these series by
a superposition of sine or/and cosine functions with periods chosen so that
they fit into a basic interval of the independent variable. A naive approach
to the construction of a Fourier series for the saw tooth force in Fig. 4.30 can
be described as follows:

• The aim is a representation of the function F (t) = t in the basic interval
−a ≤ t ≤ a with trigonometric functions so that the periodic continuation
into neighbouring intervals F (t ± 2a) = F (t) is automatically satisfied.
The representation of this odd periodic function by a trigonometric series
is given by

F1(t) =
2a
π

sin
(π

a
t
)

in a first approximation. The factor π/a in the argument of the sine func-
tion assures that the sine curve fits exactly into the basic interval. The
amplitude of the sine function is determined by an optimal adaptation of
the over- and under shooting (Fig. 4.30b).

• To this approximation a sine function with twice the frequency and an
appropriate amplitude and sign is added. The amplitude is chosen so that
the deviation of the first approximation from the exact function F (t) = t
is reduced in an optimal fashion. The function

F2(t) =
2a
π

(
sin

π

a
t − 1

2
sin

2π
a

t

)
satisfies these requirements. The representation of the saw tooth function
in this approximation (F ≈ F1 + F2) is presented in Fig. 4.30c.
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(a) (b)

 t

 F

 -a
 a

force in the
basic interval

 t

 F

 -a
 a

first approximation

(c) (d)

 t

 F

 -a
 a

second approximation

 t

 F

 -a
 a

approximation with N terms

Fig. 4.30. Fourier representation of a saw tooth force

• The continuation of this method is in principle simple. In the next approx-
imation a contribution with three oscillations in the basic interval is used,
etc. The amplitude of each additional contribution is adapted so that the
deviation from the function F (t) = t is minimized more and more. An
approximation with N terms is indicated in Fig. 4.30d. Finally (in the
limit N → ∞) the Fourier representation of the saw tooth function is ob-
tained, which allows a periodic continuation of the basic function shown in
Fig. 4.30a.

F (t) =
2a
π

∞∑
n=1

(−)n+1 1
n

sin
(

nπt

a

)
. (4.64)

The function is manifestly periodic. It satisfies the necessary condition
F (t) = F (t ± 2a) . The representation in the basic interval is repeated in
all neighbouring intervals.

The verbal indication of a Fourier series given here is put on a proper founda-
tion in Math.Chap. 1.3.4. An explicit derivation of the representation (4.64)
of the saw tooth function is also presented in that chapter.

The answer to the question posed in the beginning is therefore: the general
solution of the forced oscillator problem is
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x(t) = xhom(C1, C2, t) +
N∑

n=0

xn(t)

if the external force can be represented in the form

F (t) =
N∑

n=0

Fn(t)

with a finite value of N and if the particular solutions xn(t) of the individual
differential equations

aẍn(t) + bẋn(t) + cxn(t) = Fn(t)

are known. This statement still holds, if the limit N → ∞ is considered, as
for example in the representation of a periodic function by a Fourier series,
provided the relevant mathematical conditions are satisfied.



5 General Formulation of the Mechanics of
Point Particles

The second axiom of Newton implies, that the time development of the mo-
tion of a point particle or a system of point particles can be calculated, if the
forces acting on the particle are known. Besides the fact that the solution
of the equations of motion is not necessarily a simple matter, difficulties can
arise from different quarters. It is possible that the forces (in the form of a
force field or as a function of time or . . .) are not known explicitly. The motion
can be restricted by constraints, which are expressed in the form of geomet-
rical conditions. A simple example of this kind of restriction is the motion
on an inclined plane. The pressure, which an object (a mass point) exerts on
the surface of the plane, generates a counter pressure which compensates in
part the effect of gravitation. This constraining force can be determined by
simple means in the case of the inclined plane. A more effective approach is,
however, required in the general case. The discussion of problems of motion
with constraints was initiated by J.-L. de Lagrange. The set of equations of
motion, in which an ansatz for the constraining forces is introduced explicitly,
is known as the Lagrange equations of the first kind (for short Lagrange I).
A formal foundation of these equations is furnished by d’Alembert’s princi-
ple, which can be understood as a concise extension of the second axiom if
constraints for the motion are present.

D’Alembert’s principle also serves as a basis for the derivation of the La-
grange equations of the second kind (for short Lagrange II). In these equations
specific classes of constraining conditions are treated by a choice of optimal
coordinates (the generalised coordinates). These equations of motion offer
economy in the formulation as well as flexibility in applications. They can be
considered as the heart of ’higher mechanics’.

An alternative approach to the problem of constrained motion is due
to W. Hamilton (5.4.1, in particular 5.4.1.4). The basis of this formulation,
Hamilton’s principle, is a counterpart of d’Alembert’s principle in the sense
that Hamilton’s principle is based on integrals while d’Alembert’s principle
is based on differentials.

The present chapter starts with a discussion of the equations of motion, in
which the constraining forces are used in explicit form, that is the Lagrange
equations of the first kind.

R.M. Dreizler, C.S. Lüdde, Theoretical Mechanics, Graduate Texts in Physics,  
DOI 10.1007/978-3-642-11138-9_5, © Springer-Verlag Berlin Heidelberg 2010 
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5.1 Lagrange I: the Lagrange equations of the first kind

The topic, which is treated in this section, is best introduced with the aid
of some examples. The examination of these examples makes it possible to
gather sufficient information on the properties of the constraining or restrain-
ing forces. This in turn allows the formulation of equations of motion includ-
ing the constraints in a general fashion.

5.1.1 Examples for the motion under constraints

A point particle is supposed to move on an arbitrary surface in space un-
der the influence of (simple) gravity (Fig. 5.1). Possible frictional effects are
neglected. The initial conditions have to be chosen, so that the subsequent
motion really takes place on the surface. The mass point is located on the
surface at time t = 0 and its initial velocity v0 is tangential to the surface. It

 mg

Fig. 5.1. Motion with constraints

is quite obvious that gravity F = mg cannot be the only force that acts on
the mass. If this were the case, it would be uniformly accelerated and move,
depending on the initial conditions, along a parabola or along a straight line.
In addition to gravity, forces due to the constraining surface have to be taken
into account. These constraining forces arise from effects on an atomic level.
The pressure exerted on the surface displaces the atoms of the surface layers
downward from their equilibrium positions. They react with a restoring force
on the object that initiated the ’disturbance’. Fortunately it is possible to
characterise the restoring forces in an adequate manner without recourse to
atomic or solid state physics. The following simple argument (Fig. 5.2) shows
why this is the case: decompose the gravitational force F for each point

- F 

 F

 F

 F

Z =

Fig. 5.2. Motion with constraints: sorting of the
forces
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of the surface into components tangential and perpendicular to the surface.
The tangential component is responsible for the motion along the surface. As
there exists no (macroscopic) motion of the mass in the normal direction, the
component of the gravitation in this direction (F⊥) has to be compensated
by a constraining force Z

F⊥ + Z = 0 . (5.1)

An adept use of this compensation is the key to the Lagrangian equations of
the first kind.

In the second example a mass point (realised by a small, pierced bead) is
supposed to slide (down) on a stiff guiding wire (Fig. 5.3) under the action
of gravitation. This is an example for a constrained motion along a curve in

 2 Z

 1 Z

 mg
Fig. 5.3. Motion along a space curve with constraints:
constraining forces

space. The situation concerning the constraining forces is more complicated.
It is not sufficient to compensate one part of the gravitational force (Z1). In
order to obtain a motion along the space curve, a second constraining force in
the direction of the instantaneous centre of curvature (Z2) is required. The
two constraining forces (and hence their vectorial sum, the total constrain-
ing force) are characterised by the fact that they are perpendicular to the
instantaneous direction of motion for all times

Z(t) · dr = (Z1(t) + Z2(t)) · dr = 0 . (5.2)

This relation ensures, that even if constraining forces are present, only the
normal, the openly acting forces F contribute to the energy balance. The
equations of motion for a mass point

mr̈ = F + Z

with conservative forces F and the (initially in detail unknown) constraining
forces Z lead via line integration to the law of energy conservation in the
form

m

2
v2 + U(r) = E0 .

The potential energy U is solely determined by the open forces
∫

F ·dr , the
line integral

∫
Z ·dr vanishes. Constraining forces do not contribute in view

of the condition (5.2).
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The motion along a spatial curve, a problem of motion with one degree of
freedom, is completely characterised by one differential equation. The energy
principle is therefore sufficient for the discussion of conservative problems,
even though the situation is more complicated with respect to the constrain-
ing forces. A relevant quantity for the description of the sole degree of freedom
is the arc length along the specified curve. The length of an infinitesimal sec-
tion of a curve can be represented in Cartesian coordinates as

ds =
[
dx2 + dy2 + dz2

]1/2
. (5.3)

The arc length of a section of a curve, which is described in terms of a
parameter q

x = x(q) y = y(q) z = z(q)

between points characterised by q0 and q , is given by

s(q, q0) =
∫ q

q0

dq′
[(

dx

dq′

)2

+
(

dy

dq′

)2

+
(

dz

dq′

)2
]1/2

. (5.4)

For the discussion of a problem of motion time has to be introduced. Equation
(5.3) is equivalent to

ds

dt
=

[(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2
]1/2

= v .

The independence of the line integral from the choice of a specific parameter
can be gleaned from a comparison of this the equation with (5.4).

The law of energy conservation can be written as
m

2
ṡ2 + U(s) = E0 , (5.5)

if it is possible to express the potential energy in terms of the arc length
(U(r) −→ U(s)). The solution of this one dimensional differential equation
for s = s(t) describes the motion along a specified space curve. Examples are:

• A mass point moves under the influence of gravitation along a straight line
in the x - z plane. The slope is specified by the angle −α (Fig. 5.4). The

 −α  x

 z

 h

 mg
Fig. 5.4. Motion along a straight line under the influ-
ence of gravity

trajectory can be represented by the parametrisation

x = q z = −(tanα) q (y = 0) .
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The initial conditions, in accord with the constraint, are

x(0) = − h

tanα
z(0) = h

vx(0) = 0 vz(0) = 0

⎫⎬
⎭ q(0) = − h

tanα

q̇(0) = 0 .

The law of energy conservation
m

2
ṡ2 + mgz = 0 + mgh

yields the differential equation

ṡ = ± [2g(h − z)]1/2
.

The relation between s and z , that is needed in this example, can be taken
from a simple geometrical argument (see Fig. 5.5, only the absolute value
of the angle α is relevant)

−α
 x

 z

 h
 h-z

 s Fig. 5.5. Geometry: straight inclined line

sinα =
h − z

s
(h − z) = s sinα .

The arc length s can be calculated alternatively via the integral (5.4), even
if this is a bit more tedious

s =
∫ q

q0

dq′
[(

dx

dq′

)2

+
(

dz

dq′

)2
]1/2

=
[
1 + tan2 α

]1/2
∫ q

−h/ tan α

dq′

=
1

cosα

(
q +

h

tanα

)
=

1
sinα

(q tanα + h) =
1

sinα
(−z + h) .

The differential equation

ṡ = +
√

2g sinα
√

s (5.6)

is obtained in each case. Only the positive sign is of interest, as the arc
length increases with time. Direct integration (with a separation of vari-
ables and s(0) = 0) leads to

s(t) =
(g

2
sinα

)
t2 .

The time dependence of the Cartesian coordinates can be determined with

q = s cosα − h

tanα
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or more directly as

z = h − s sinα = h − g

2
(sin2 α)t2

x = − z

tanα
= − h

tanα
+

g

2
(cosα sinα) t2 .

This result is also valid for the free fall on an inclined plane provided the
initial conditions are y(0) = 0, ẏ(0) = 0 .

• The following example will turn out to be well known. A mass point moves
(again) under the influence of gravity in the lower half of the x - z plane
on a semicircle (radius R) about the origin(Fig. 5.6). The initial conditions

 mg

 m

 z
 x

Fig. 5.6. Motion on a semicircle

are

x(0) = R z(0) = 0
vx(0) = 0 vz(0) = 0 .

The energy principle is not that different from the previous example

1
2
ṡ2 + gz = 0 .

The relation between z and s can be obtained in the following fashion: a
parametric representation of the trajectory is

x = R cos q z = −R sin q (0 < q < π) .

This leads to

s =
∫ q

0

dq′
[
R2 sin2 q′ + R2 cos2 q′

]1/2
= R

∫ q

0

dq′ = Rq .

The result could have been obtained directly with the statement: arc length
is radius times angle.
Introducing s (instead of q) into the parametric representation of the z -
coordinate

z = −R sin
s

R

gives for the energy principle

ṡ2 − 2gR sin
s

R
= 0 .

The law of energy conservation becomes
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ϕ̇2 − 2g
R

cosϕ = 0

if the angle ϕ, which is measured from the lowest point of the trajectory
Fig. 5.7, is used instead of the arc length s

s = R
(π

2
− ϕ

)
and ṡ = −Rϕ̇ .

 ϕ  s

 R

Fig. 5.7. Relation between arc length and angle of deflection

This result expresses energy conservation for the mathematical pendulum
(with the initial conditions ϕ(0) = π/2, ϕ̇ = 0), which has been discussed
in Chap. 4.2.1. It is irrelevant whether the constraining force is due to a
rigid rod, a guiding wire or any other arrangement. Only the geometry of
the guiding curve is important.

• The last example demonstrates that the representation of the potential
energy through the arc length can lead to computational difficulties, even
for relatively simple geometric situations. The guiding curve is in this case
the parabola z = x2 . Otherwise the situation is similar to the previous
example. The representation of the coordinates, x = q, z = q2 , allows the
calculation of the arc length

s =
∫ q

q0

dq′
√

(1 + 4q′2)

=
1
4

{
2q′

√
(1 + 4q′2) + ln

[
2q′ +

√
(1 + 4q′2)

]}∣∣∣∣
q

q0

.

It can be recognised immediately, that inversion in the form z = z(s) will
meet with difficulties after the insertion of q =

√
z , respectively q0 =

√
z0 ,

into this result.

The following statements can be extracted from these examples: the en-
ergy principle is sufficient for a discussion of the motion of a mass point under
the influence of a conservative, openly acting force along a given spatial curve.
However, the principle does not provide an optimal access to the discussion
of such problems. It might be possible to circumvent some of the difficulties
by a more flexible choice of the coordinates, as in the Lagrange equations
of motion of the second kind. The principle of energy (one differential equa-
tion) is under no circumstances sufficient for the discussion of the motion of
a mass point on a given surface (a two dimensional problem). A more general



192 5 General Formulation of the Mechanics of Point Particles

access to problems of motion, in which constraining forces are incorporated
explicitly, is required.

5.1.2 Lagrange I for one point particle

The formulation, that is known under the name Lagrange I, is an extension
of Newton’s equations of motion. It offers the following advantages:

(1) All problems with constraints are treated in a consistent manner.
(2) The constraining forces can in all cases be calculated explicitly.

The last point may, under given circumstances, be desirable. The knowledge
of the stress on the material of technical devices (machines), in other words
the constraining forces acting in the device, is without any doubt important
for their construction. A drawback of the equations of motion in the form
Lagrange I is, as indicated above, a certain lack of flexibility.

5.1.2.1 Motion on a surface. The equations of motion for the motion on
a specified surface can be obtained with the following argument: A surface
embedded into three dimensional space (Fig. 5.8) can be characterised by an
implicit equation of the form f(x, y, z) = 0 ( Math.Chap. 4.1.1). Examples
are

surface of a sphere: x2 + y2 + z2 − R2 = 0

plane: z − ax − b = 0 .

 z

 y

 x

 f

Fig. 5.8. Gradient vector on a surface

The total differential of the function f = 0 is

df =
df

dx
dx +

df

dy
dy +

df

dz
dz = 0

or in vectorial form

df = ∇f · dr = 0 .

The infinitesimal displacement vector dr is tangential for each point of the
surface. The equation expresses therefore the fact, that the gradient vector
∇f is always perpendicular to the surface f = 0 . As the constraining forces
have exactly the same property, the ansatz
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Z = λ(x, y, z) ∇f (5.7)

suggests itself. The factor of proportionality takes care of the variation of the
strength of the constraining force with the position on the surface. This factor
is not known initially. It has to be determined during the process of solving
the problem of motion. This factor λ is called the Lagrange multiplier.
The equations of motion with apparent and constraining forces can, according
to the second axiom, be written in the form

mr̈ = F + λ∇f (5.8)

or in detail as

mẍ = Fx + λ(x, y, z)
∂f

∂x
mÿ = Fy + λ(x, y, z)

∂f

∂y

mz̈ = Fz + λ(x, y, z)
∂f

∂z
. (5.9)

These three equations do not suffice for the determination of the four un-
known functions

x(t), y(t), z(t) and λ(x(t), y(t), z(t)) .

A fourth equation is needed, which assures that the mass point moves on the
surface. This is given by the equation of the surface, which has to be satisfied
by the solution

f(x(t), y(t), z(t)) = f(r(t)) = 0 . (5.10)

The set of four (framed) equations for the four unknown functions are the
Lagrange equations of the first kind (for the motion of a mass point on
a given surface f = 0). These equations allow, in principle, the determination
of the time development of the motion and of the strength of the constraining
forces for each point of the trajectory.

5.1.2.2 Motion along space curves. The representation of a curve in
space by the intersection of two surfaces

f1(x, y, z) = 0 f2(x, y, z) = 0

is a useful tool for the discussion of the motion of a point particle on a space
curve. Examples are:

• An ellipse with an arbitrary orientation in space can be represented by the
intersection of a plane with a cylinder. An example is the ellipse described
by the intersection of an inclined plane, that contains the y - axis

f1 = z − x = 0 or z = x
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with a cylinder about the z - axis (see Fig. 5.9a)

f2 = x2 + y2 − R2 = 0

(see D.tail 5.1).
• A slightly more exotic curve results from the intersection of an inclined

surface resembling a sheet of corrugated iron

f1 = z + x − sinx = 0

with the x - z plane

f2 = y = 0 .

The result is a roller-coaster curve with a uniform average decline (Fig. 5.9b).

(a) (b)

 z

ellipse

 z

 y

 x

roller-coaster curve

Fig. 5.9. Space curves as intersections of surfaces

The constraining forces are characterised by the postulate that they
should be perpendicular to the curve for each point of the curve. A vector
with these properties can be written as

Z = λ1(r) ∇f1(r) + λ2(r) ∇f2(r) . (5.11)

The sum of the (independent) gradient vectors, each perpendicular to the
corresponding surface and multiplied with a Lagrange multiplier, yields a
vector with the desired properties.

For the determination of the five quantities x(t), y(t), z(t), λ1(t), λ2(t)
five equations are available

mr̈ = F (r) + λ1∇f1(r) + λ2∇f2(r)
as well as

f1(r) = 0 and f2(r) = 0 .

(5.12)

The three equations of motion for the components of the position vector
and the equations representing the two surfaces are the Lagrange equations
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of the first kind for the motion on a spatial curve. Energy conservation is
valid for both the motion on a curve as well as on a surface

m

2
v2 + U(r) = E0

if the explicit forces F are conservative. The constraining forces do not con-
tribute to the energy balance for displacements along the curve or on the
surface.

The central assumptions that were used for the formulation of the La-
grange equations of the first kind are:

(a) The validity of the second axiom with a total force, which is the sum of
the openly acting forces (also called active forces) and the constraining
forces.

(b) The constraining forces are, for all times, perpendicular to the specified
curve or surface.

It is necessary to examine the validity of the second assumption by a compar-
ison of theory and experiment. The formulation of the Lagrange equations of
the first kind requires the use of assumptions or experiences which are not
contained in Newton’s axioms. The question has to be asked for this rea-
son: is it possible to combine the axioms and the ’additional experience’ in
a more general principle of mechanics? This question will be answered with
d’Alembert’s principle (the principle of virtual work), but only in Chap. 5.2.1.

5.1.2.3 Time changing curves and surfaces. The constraints, which
have been considered so far, have been generated by static curves or surfaces.
The next question is obviously something like: how can the discussion of the
motion of a point particle which moves under the influence of gravity (and
without friction) along an oscillating (or otherwise moving) wire be handled?
A surface or a curve, that changes with time, is characterised by the following
set of equations

surface : f(x, y, z, t) = 0
curve : f1(x, y, z, t) = 0 f2(x, y, z, t) = 0 .

(5.13)

Some explicit examples are:

• An moving inclined plane is described by the function

z − h(t) + (tanα)x = 0 .

The function h(t) = v0t characterises e.g. a plane that moves uniformly
up or down, the function h(t) = a0t

2 describes a plane that is uniformly
accelerated or h(t) = a0 cosω0t a plane that oscillates periodically.

• A sinusoidal wave front, which moves uniformly ’to the right’ (the x - di-
rection) can be represented by the function (Fig. 5.10a)

z − A sin
(

2π
L

x − ω0t

)
= 0 .
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(a) (b)

 L

 z

 x

 ϕ = 0
 ϕ = 0 z

 x

Fig. 5.10. Moving wave front

The function represents a stationary sinusoidal surface in three dimensional
space for ω0 = 0 . The periodicity of the surface is characterised by the
wavelength L. The time dependent phase ϕ = ω0t describes the uniform
displacement of the sinusoidal surface with respect to a reference surface
with ϕ = 0 (Fig. 5.10b). The uniformly moving surface can e.g. serve as a
simplified model of a water wave.

• The example indicated in Fig. 5.11 represents a straight piece of wire in the
x - z plane, which rotates about the y - axis. This curve can be characterised
by the intersection of the (time changing) surfaces

z − x tanα(t) = 0 and y = 0 .

 α

 z

 x

Fig. 5.11. Rotating straight piece of wire

The wire rotates uniformly about the y - axis for α(t) = ω0t , it oscil-
lates with the frequency f0 = ω0/2π between the maximal angles ±α0 for
α(t) = α0 sinω0t.

5.1.2.4 Classification of constraints. All constraints (whether time de-
pendent or not) can alternatively be specified in differential form. A surface
f(x, y, z, t) = 0 (or the functions f1(x, y, z, t) = f2(x, y, z, t) = 0 in the case
of a space curve) can e.g. be characterised by the total differential

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz +

∂f

∂t
dt = 0 . (5.14)

The constraint is termed holonomic, if the functions ai in the general dif-
ferential form



5.1 Lagrange I: the Lagrange equations of the first kind 197

a1(x, y, z, t)dx + a2(x, y, z, t)dy + a3(x, y, z, t)dz

+ a0(x, y, z, t)dt = 0 (5.15)

are, as in (5.14), the partial derivatives of a function f(x, y, z, t) with respect
to the appropriate coordinates. Holonomic signifies ’whole’ or ’complete’.
The terminology refers to the statement, that the differential form represents
a total (that is complete) differential, from which the function f could be
obtained by line integration.

The theorem of Schwarz ( Math.Chap. 4.2.2) for a function f(x, y, z, t) ,
which can be differentiated twice, can be used in order to formulate the
definition of a holonomic constraint as:

A constraint of the form

a1(x, y, z, t)dx + a2(. . .)dy + a3(. . .)dz + a0(. . .)dt = 0

is called holonomic, if the conditions

∂a1

∂y
=

∂a2

∂x
, . . .

∂a0

∂x
=

∂a1

∂t
, . . .

are satisfied.

The two possibilities, which have been addressed so far, are a static or a
moving surface (or curve) with

a0 =
∂f

∂t
= 0 or a0 =

∂f

∂t
�= 0 .

They are referred to as scleronomic (rigid), respectively rheonomic (flow-
ing).

A suitable ansatz for the constraining forces in the case of rheonomic con-
straints has to be formulated now. It is necessary to rely once more on experi-
ence (if available) for this purpose. Experience tells us, that the constraining
forces are perpendicular to the surfaces or curves, even if the constraints are
rheonomic. This means, that the constraining forces can still be represented
as

Z = λ∇f(x, y, z, t) (surface) (5.16)
Z = λ1 ∇f1(x, y, z, t) + λ2 ∇f2(x, y, z, t) (curve) . (5.17)

The dependence of the Lagrange multipliers on the position and the time has
been suppressed. The Lagrange equations have the same form for rheonomic-
holonomic and scleronomic-holonomic constraints. On the other hand, the
time dependence implies, that the constraining forces do work on a point
particle, which is subjected to rheonomic-holonomic constraints (in other
words: which moves on a time changing curve/surface).
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The statement concerning the work follows from the argument: consider
a point particle, for which the position on a surface f(t) at time t is marked
by the vector r(t). During the interval dt the point particle moves on the
surface, which itself is in motion. The position of the particle on the surface
f(t+dt) at the infinitesimally neighbouring time t+dt can be described by a
vector r + dr (Fig. 5.12). The constraint itself corresponds to the statement

 f(t+dt)

 f(t)  dr

 r(t) Fig. 5.12. Illustration of the situation for rheonomic con-
straints

∇f · dr = −∂f

∂t
dt . (5.18)

This equation indicates that the infinitesimal work of constraining forces
(proportional to ∇f · dr) in the presence of rheonomic constraints is not
equal to zero (see right hand side).

Constraints of the form (5.15), which do not correspond to a total differ-
ential, are termed nonholonomic

a1(x, y, z, t)dx + a2(x, y, z, t)dy + a3(x, y, z, t)dz + a0(x, y, z, t)dt = 0

with
∂a1

∂y
�= ∂a2

∂x

∂a1

∂z
�= ∂a3

∂y
. . . .

It is sufficient that one of the inequalities is satisfied. In this case the following
nomenclature is used:

1. The constraint is termed nonholonomic-rheonomic, if a0 �= 0 and at least
one of the coefficients is not a partial derivative of a function f(x, y, z, t)
with respect to the appropriate coordinate.

2. The constraint is termed nonholonomic-scleronomic, if at least one of
the coefficients is not a partial derivative of a function f(x, y, z, t) and if
a0 = 0 .

Nonholonomic constraints arise, if coordinates and velocities are combined in
some fashion. The condition

dx

dt
− g(x, y, z) = 0

can, for instance, be expressed in the nonholonomic form
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dx − g(x, y, z)dt = 0 .

More explicit verbal examples are

- the condition for the rolling of a wheel (see Probl. 5.1),
- the condition for guiding the runner of ice skates.

A last variant for the specification of constraints are inequalities. The
constraint for the motion of a mathematical pendulum supported by a string
(rather than a rod) is

x2 + y2 + z2 ≤ l2 .

The pendulum can collapse, it can, however, not be further away from the
point of suspension than the length of the string l , provided the string cannot
be stretched or tears. Such conditions are called one-sided constraints.
They cannot be incorporated in a simple manner into the equations of motion.

The difference between scleronomic and rheonomic constraints (in the
form of a one-sided constraint) can be observed in the game of tennis. The ball
will be reflected, but does not change its kinetic energy (neglecting side effects
like the generation of noise), if the racket is just placed into the trajectory
of the ball (scleronomic). Work is performed and the kinetic energy of the
reflected ball is increased, if the ball is hit in the usual fashion (rheonomic
constraints).

5.1.2.5 Examples for the solution of the equations of motion (La-
grange I). The pattern for the solution of problems of motion with explicit
constraints can be demonstrated very well for the example of the free fall on
an inclined plane. This example is a simple holonomic-scleronomic problem
that can also be discussed in an elementary fashion. The results are therefore
not (essentially) different from the treatment of the problem on p. 188 ff. The
plane is characterised by the equation

f = z + (tanα)x = 0

(see Fig. 5.4 for a cut through the plane), so that the gradient of f is

∇f = (tanα, 0, 1) . (5.19)

The equations of motion are therefore

mẍ = λ′ tanα

mÿ = 0

mz̈ = −mg + λ′

⎫⎪⎬
⎪⎭ −→

ẍ = λ tanα

ÿ = 0

z̈ = −g + λ .

(5.20)

It is useful to incorporate the mass into the definition of the multiplier:
λ′/m = λ .

The first step towards the solution of this system of equations of motion
is: differentiate the equation for the plane twice with respect to time

z̈ + tanα ẍ = 0
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and insert this relation into the last of the equations (5.20)

−(tanα)ẍ = −g + λ .

This has to be resolved with respect to λ , which is then inserted into the
first of the equations (5.20)

ẍ = −(tan2 α)ẍ + g tanα .

This expression can be sorted using

1 + tan2 α =
1

cos2 α

to obtain a differential equation for the x - coordinate

ẍ = g sinα cosα .

The general solution is

x(t) = x(0) + vx(0)t +
1
2
g(sinα cosα)t2 .

The solution of the differential equation (5.20) for the y - coordinate is simple

y(t) = y(0) + vy(0)t .

The point particle can have a specified position and (constant) velocity in
the y - direction. The equation of the plane z(t) = −(tanα)x(t) should be
used for the determination of the function z(t). This gives

z(t) = −(tanα)x(0) − (tanα)vx(0) t − 1
2
g(sin2 α)t2 .

No independent initial conditions can be specified for the z - component. The
constraint assures that the mass point is located on and moves with the plane.

The Lagrange multiplier can e.g. be obtained from the last of the equations
(5.20)

λ = g + z̈ = g(1 − sin2 α) = g cos2 α ,

so that the constraining force is given by

Z = mλ∇f = mg(cosα sinα, 0, cos2 α) .

This corresponds exactly to the decomposition of the vector

F⊥ = mg cosα e⊥

into Cartesian components.
A problem with rheonomic-holonomic constraints is the free fall on a

moving inclined plane, which can be specified by

f = z − h(t) + (tanα)x = 0 ∇f = (tanα, 0, 1) .

(A more exhaustive discussion is called for in Probl. 5.2). The function h(t)
describes the motion of the plane in the z - direction. The apparent force is
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once more simple gravitation. The equations of motion are therefore initially
the same as in the corresponding scleronomic problem

ẍ = λ tanα ÿ = 0 z̈ = −g + λ .

Differentiation of the constraint results in

z̈ = ḧ − ẍ tanα ,

so that

λ = g + ḧ − ẍ tanα and ẍ = (g + ḧ) cosα sinα

follows. The general solution of the differential equation for x is naturally
different from the scleronomic counterpart

x(t) = C1 + C2t +
(g

2
t2 + h(t)

)
cosα sinα . (5.21)

This result is used to calculated the multiplier

λ = (g + ḧ) cos2 α

and the z - coordinate

z(t) = −(C1 + C2t) tanα − g

2
t2 sin2 α + h(t) cos2 α . (5.22)

A special solution, e.g. with the initial conditions x(0) = 0 and ẋ(0) = 0 of
the x - coordinate, is

x(t) =
[
(h(t) − h(0)) +

(g

2
t2 − ḣ(0)t

)]
sinα cosα

z(t) = −
[
(h(t) − h(0)) +

(g

2
t2 − ḣ(0)t

)]
sin2 α + h(t) .

The motion in the two coordinate directions is composed of a free fall motion
on a static plane (the term depending on g) plus a ’push’ due to the motion of
the plane. The initial values for the z - coordinate are, as they must, correlated
with the initial conditions for the function h(t)

z(0) = h(0) ż(0) = ḣ(0) .

The energy situation can be discussed as follows: the constraining force is
given by

Z = m(g + ḧ(t))(sinα cosα, 0, cos2 α) ,

so that the total force acting on the mass is

F + Z = −mgez + Z .

The total force is simple, if the plane is horizontal (α = 0). It has only a
z - component in this case, which depends on the second derivative of the
function h(t) .

Integration of the equation of motion (line integration) along the trajec-
tory between starting and end point
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i

mr̈ · dr =
∫ f

i

F · dr +
∫ f

i

Z · dr

leads to(m

2
v2

f + Uf

)
−
(m

2
v2

i + Ui

)
= ΔA .

The potential energy difference of the mass due to the gravitational field of
the earth is

Ui − Uf = −
∫ f

i

F · dr .

ΔA is the work supplied to the mass by the constraining force. The scalar
product of Z and dr does not vanish for the moving plane.

The kinetic energy, evaluated for the special solution of the equations of
motion, is found to be

T (t) =
m

2
(
ẋ2 + ż2

)
=

m

2

[
(ḣ(0) − gt)2 sin2 α + ḣ2(t) cos2 α

]
,

the corresponding potential energy in the gravitational field of the earth

U(t) = mgz = mg
{
−
[
(h(t) − h(0)) +

(g

2
t2 − ḣ(0)t

)]
sin2 α + h(t)

}
.

These relations yield for the total energy of the mass at the time t

E(t) = (T (t) + U(t)) =
m

2

{[
(ḣ(t)2 − ḣ(0)2) + 2g(h(t) − h(0))

]
cos2 α

+ (2gh(0) + ḣ(0)2)
}

.

The energy, which the moving plane transfers in the interval [0, t] to the mass,
is therefore

ΔA(t) = E(t) − E(0) =
m

2

[
(ḣ(t)2 − ḣ(0)2) + 2g(h(t) − h(0))

]
cos2 α .

This result can also be obtained by evaluation of the (in general path de-
pendent) line integral with the constraining force, for which the time can be
used as a parameter

ΔA =
∫ f

i

(Zxdx + Zzdz) =
∫ t

0

(Zxẋ + Zz ż) dt′ .

The total energy E = T + U changes in the case of a rheonomic constraint
as the mass is lifted or lowered by the action of the constraining force. For
the scleronomic case (h(t) , ḣ(t) = 0) energy is conserved

E(t) = E(0) = 0 .

The last example will demonstrate explicitly that computational difficul-
ties can prevent an analytical solution of the Lagrangian equations of the
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first kind. The example is again the motion along a section of a parabola, or
alternatively in a parabolic tub, which is described by (Fig. 5.13)

f = z − x2 = 0 . (5.23)

 z

 y

 x

Fig. 5.13. Motion in a parabolic tub

This surface (a quadratic instead of a linear form) is not really complicated.
The gradient of the function is

∇f = (−2x, 0, 1)

so that the Lagrange equations of motion are found to be

ẍ = −2λx ÿ = 0 z̈ = λ − g λ = λ′/m . (5.24)

The first step is again the elimination of the unknown multiplier. The equa-
tion of the surface (5.23) is differentiated with respect to time for this purpose

ż = 2xẋ z̈ = 2ẋ2 + 2xẍ

and ẋ in the second equation is replaced using the first of these equations

z̈ − ż2

2z
= 2xẍ . (5.25)

In the next step the equation for the x - component (5.24) is multiplied by
2x

2xẍ = −4λx2 = −4λz . (5.26)

A comparison of (5.25) and (5.26) yields the relation

z̈ − ż2

2z
= −4λz . (5.27)

In the final step the equation (5.24) for the z - component is multiplied by
−4z

−4z̈z = −4λz + 4gz

and λ is eliminated with the aid of (5.27)

(4z + 1)z̈ − ż2

2z
+ 4gz = 0 . (5.28)

This differential equation of second order for z(t) cannot be solved analyti-
cally (in a simple fashion). Numerical methods or a power series expansion
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(see Math.Chap. 6.3 and 6.4) are required. The application of the Lagrange
equations of the first kind to the problem of motion in a parabolic tub presents
the same difficulties, that were found for the problem of motion along a sec-
tion of parabolic wire (which has been discussed via the energy principle
on p. 191). The Lagrange multiplier λ = z̈ + g and the time development of
the x - coordinate x = ±√

z can only be determined, once a solution of the
differential equation (5.28) is obtained with whatever means1.

The situation indicated is symptomatic. As soon as the constraints are
more complicated, the equations of motion with (unknown) constraining
forces cannot be solved analytically for many situations. This is sufficient
motivation to look for a more flexible formulation, the Lagrange equations
of motion of the second kind. Two additional topics have to be addressed
beforehand: the discussion of d’Alembert’s principle and the formulation of
the Lagrange equations of the first kind for systems of point particles.

5.2 D’Alembert’s

The direct approach to the formulation of the Lagrange equations of the first
kind for one point particle, that has been outlined in the previous sections,
cannot be generalised in a simple fashion to the discussion of systems of
point particles. In order to address such systems, it is useful to consider
an alternative, though somewhat unusual approach, which is summarised in
d’Alembert’s principle. This principle is first formulated for the case of one
mass point.

5.2.1 D’Alembert’s principle for one mass point

The argument begins by reconsidering Newton’s equations of motion without
constraints

mr̈ − F = 0 . (5.29)

The quantity mr̈ (a force) is referred to as the inertia resistance for this
purpose and (5.29) is interpreted in the following fashion: the inertia resis-
tance and the acting forces are in an equilibrium.

5.2.1.1 The virtual displacement and virtual work. The advantage of
the interpretation suggested is at first quite minimal. A dynamical problem
has been formally reduced to a static problem: two forces, one real and one
fictive, are in equilibrium. This interpretation will, however, turn out to be
useful.
1 The reader is invited to check the claim that consideration of the differential

equation for the x - coordinate does not save the situation.

principle
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The next step is the definition of the concept of a virtual displacement.
This is a possible, but only imagined infinitesimal displacement of the mass
point. This displacement is characterised by the symbols

δs = (δx, δy, δz) with δt = 0 . (5.30)

It differs from a real displacement

ds = (dx, dy, dz) with dt �= 0 .

A real displacement always takes some time. The virtual displacement is
instantaneous. The speed with which a virtual displacement is executed is
infinite. Even if this definition sounds slightly absurd, its usefulness will soon
become apparent. On formal grounds nothing can be said against this defi-
nition. Any concept can be defined, even instantaneous displacements.

The equilibrium condition (5.29) can be reexpressed with the aid of this
concept in the form of a statement of the work involved

δA = (mr̈ − F ) · δs = 0 . (5.31)

In words: the work done on the system in formal equilibrium by a virtual dis-
placement is equal to zero. This statement constitutes d’Alembert’s principle,
which is also termed the principle of virtual work, in its simplest (though
not yet useful) form. In the case of one point particle without constraints it
just reformulates the second axiom, in the sense, that the principle follows
from the axiom

equations of motion −→ d′Alembert′s principle .

The inverse statement

d′Alembert′s principle −→ equations of motion

follows with the argument: The virtual displacements in the three directions
(δx, δy, δz) can be chosen arbitrarily if no constraints are present. It follows,
that the virtual work can only vanish, if the equations of motion are valid

mr̈ − F = 0 .

The relations (5.29) and (5.31) are completely equivalent.

5.2.1.2 Formulation of the principle of d’Alembert. The statements
gain in substance if a situation with constraints is considered. The virtual
displacements δx, δy, δz can not be independent of each other if the mass
point is supposed to move along a curve or on a surface. The displacements
have to be adapted to the constraints.

The constraint for the motion on a surface, a holonomic constraint, is in
differential form

∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz +

∂f

∂t
dt = 0 .

While this condition is true for a real displacement, only the relation

principle
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∂f

∂x
δx +

∂f

∂y
δy +

∂f

∂z
δz = 0

is admitted for a virtual displacement as δt = 0. The statement (5.31) con-
cerning the virtual work is valid for scleronomic as well as holonomic con-
ditions. The purpose of the peculiar definition of a virtual displacement can
be recognised at this stage. The definition reflects the fact, that constraining
forces are perpendicular to the constraining surface in both scleronomic as
well as rheonomic situations, in a concise fashion. This can be expressed by

∇f(x, y, z, t) · δs = 0 . (5.32)

The three components of the virtual displacement depend on each other in
a definite way according to the surface f specified. The virtual constraint
(5.32) can be combined with the relation (5.31) defining the virtual work in
two different ways2.

(1) Represent one of the displacements through the other displacements. The
virtual displacement in the x - direction can e.g. be expressed in terms of
the others displacements if the partial derivative with respect to x does
not vanish

∂f

∂x
≡ f[x] �= 0 =⇒ δx = −

(
f[y]

f[x]

)
δy −

(
f[z]

f[x]

)
δz .

The expression for δx can be inserted into equation (5.31)[
− (mẍ − Fx)

f[y]

f[x]
+ (mÿ − Fy)

]
δy +[

− (mẍ − Fx)
f[z]

f[x]
+ (mz̈ − Fz)

]
δz = 0 .

The two remaining virtual displacements are independent. The last rela-
tion can therefore only be valid if[

− (mẍ − Fx)
f[y]

f[x]
+ (mÿ − Fy)

]
= 0[

− (mẍ − Fx)
f[z]

f[x]
+ (mz̈ − Fz)

]
= 0 .

These equations constitute the equations of motion for the y - and z -
components, if the variable x is eliminated with the aid of the condition
f(x, y, z, t) = 0 .

(2) The result of the second argumentation is completely equivalent. It leads
directly to the Lagrange equations of the first kind for the situation con-
sidered. Equation (5.32) is multiplied by −λ (the Lagrangian multiplier)
and added to (5.31) with the result

2 Partial derivatives will be written in shorthand as f[x] , in order to distinguish
them from the components of vectors as in Fx .



5.2 D’Alembert’s 207[(
mẍ − Fx − λf[x]

)
δx +

(
mÿ − Fy − λf[y]

)
δy +(

mz̈ − Fz − λf[z]

)
δz
]

= 0 .

The quantity λ , which can be chosen freely, is then adjusted so that one
of the terms in round brackets, e.g.

mẍ − Fx − λf[x] = 0

vanishes. There remains[(
mÿ − Fy − λf[y]

)
δy +

(
mz̈ − Fz − λf[z]

)
δz
]

= 0 .

As two of the three virtual displacements can be chosen freely, the accom-
panying factors have to vanish. The final result is the same (eliminate λ
from the equations of motion for the y - and z - coordinates with the equa-
tion of motion for the z - coordinate) as the one that has been obtained
on the basis of a direct geometrical argument in Chap. 5.1

mr̈ = F + λ∇f . (5.33)

5.2.1.3 Comparison of Lagrange I and d’Alembert. A comparison of
the discussion of d’Alembert’s principle and of the Lagrange equations of the
first kind (for the case of holonomic constraints) might help the understand-
ing.

(i) In order to set up the Lagrange equation the argument (which can be
verified experimentally) is used: the constraining force is at all times
perpendicular to the given surface f . This corresponds to the ansatz

Z = λ∇f ,

because the strength of the constraining force is not known. As a con-
sequence, the second axiom with a total force, which is composed of an
active and a constraining force, leads to the equation of motion

mr̈ = F + Z .

(ii) The system is tested with virtual displacements. The starting point is
d’Alembert’s principle of virtual work in the form

δA = (mr̈ − F ) · δs = 0 .

In words: the virtual work of the inertial resistance and the of active
forces is equal. For the case of a free point particle, this statement is
identical with the second axiom

δA = 0 ←→ mr̈ = F .

For the case of a point particle with a holonomic constraint a second
statement has to be added: the virtual displacement should take place on
the given surface. Therefore the displacements in the three space direc-
tions are related by the condition

principle
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∇f · δs = 0 .

Combination of the two statements yields

mr̈ = F + λ∇f .

The two arguments lead to the same result. This means that they are equiva-
lent. The difference consists in the fashion in which the experience concerning
the (direction of the) constraining force is introduced. In the first case a rather
direct ansatz is used, in the second the experience concerning constraining
forces is expressed in the definition of the virtual displacement in the form

λ∇f · δs = Z · δs = 0 .

The virtual work of the constraining forces vanishes (always). By contrast the
real work dA vanishes only in the case of (holonomic) scleronomic constraints.

The second point of view is more flexible. It can also be applied to the
case of nonholonomic constraints (as long as it is not a one-sided constraint)
and it can be extended to the discussion of systems of point particles. The
argumentation with d’Alembert’s principle is formal, but it achieves its goal
more directly.

5.2.1.4 Variants and extensions. Two additional remarks are necessary
to round off the discussion for the case of one point particle:

1. There exists an alternative (though slightly antiquated) formulation of
d’Alembert’s principle. Three ’forces’ have been considered, which are con-
nected by the vectorial equation

F − mr̈ = −Z .

The negative of the constraining force is that part of the active force, which
does not lead to motion. This part is termed the lost force. The alternative
formulation of the principle states therefore

Z · δs = (mr̈ − F ) · δs = 0 (5.34)

or in verbal form

A point particle moves in such a fashion, that the
virtual work of the lost force vanishes for all times.

2. The Lagrange equations for the motion along a space curve can be
derived from d’Alembert’s principle with similar arguments as in the case of
motion on a surface. Two constraints have to be considered

∇f1 · δs = 0 and ∇f2 · δs = 0

besides the principle of virtual work

(mr̈ − F ) · δs = 0 .
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Only one of the virtual displacements can be chosen freely. Each of the con-
straints is multiplied with a suitable multiplier and these statements are
subtracted from the principle of virtual work. The explicit result is

(mẍ − Fx − λ1f1x − λ2f2x) δx + (mÿ − Fy − λ1f1y − λ2f2y) δy

+ (mz̈ − Fz − λ1f1z − λ2f2z) δz = 0 .

Three quantities (two multipliers, and one displacement) can be chosen freely.
If the multipliers are chosen, so that two of the expressions in brackets (say
the first two) vanish, then the free choice of the displacement δz leads to
three equations of motion which can be summarised in vector form as

mr̈ − F − λ1∇f1 − λ2∇f2 = 0 . (5.35)

With the concepts of virtual displacement and of virtual work the equations
of motion gained by the geometric argument are recovered.

5.2.2 D’Alembert’s principle for systems of point particles

D’Alembert’s principle for systems of point particles constitutes a basis, on
which classical mechanics can be founded. It will be formulated here in a
compact notation. From this principle both the Lagrange equations of the
first as well as of the second kind can be derived. Two additional examples
are added to illustrate the solution of simple problems of motion with the aid
of the Lagrange equations of the first kind.

5.2.2.1 Formulation. If all the constraining forces in a system of N point
particles were known, one would write with Newton

mir̈i = F i + Zi (i = 1, 2, . . . N) .

Internal as well as external forces are included in the active force F i on the
i-th point particle of the system. The virtual work of the lost force for each
of the point particles can be calculated as

δAi = (mir̈i − F i) · δsi = 0 (i = 1 . . . N)

if the virtual displacement of each of the point particles in the system is
defined by

δsi = (δxi, δyi, δzi) .

As the work is a scalar quantity, the individual contributions can be added
to yield the total virtual work

N∑
i=1

(mir̈i − F i) · δsi = 0 . (5.36)

It is useful for the discussion, that follows, to adjust the notation by a con-
secutive numbering of the coordinates and the masses using the correspon-
dence

principle
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x1 y1 z1 x2 y2 z2 xN yN zN

↓ ↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓
x1 x2 x3 x4 x5 x6 x3N−2 x3N−1 x3N

m1 m1 m1 m2 m2 m2 mN mN mN

↓ ↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓
m1 m2 m3 m4 m5 m6 m3N−2 m3N−1 m3N

and the same pattern for the components of the force

F1x F1y F1z F2x F2y F2z FNx FNy FNz

↓ ↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ .
F1 F2 F3 F4 F5 F6 F3N−2 F3N−1 F3N

D’Alembert’s principle for a system of mass points can then be written as

3N∑
i=1

(miẍi − Fi) δxi = 0 . (5.37)

Individual particles in the system can be bound on surfaces or curves, or dis-
tances between masses can have fixed values. For example, two point particles
could have a constant separation l

N = 2 −→ (x1 − x4)2 + (x2 − x5)2 + (x3 − x6)2 − l2 = 0 .

Assume that there exist r constraining conditions for the system of point
particles, which are (except one-sided constraints) specified explicitly by

ak,1 (x1 . . . x3N , t) dx1 + ak,2 (x1 . . . x3N , t) dx2+
. . . + ak,3N (x1 . . . x3N , t) dx3N + ak,0 (x1 . . . x3N , t) dt = 0

(k = 1, 2, . . . r) .

The following cases can be distinguished as before:

ak,i ak,0

∂fk(x1, . . . x3N , t)

∂xi
0 holonomic − scleronomic

∂fk(x1, . . . x3N )

∂xi

∂fk(x1, . . . x3N , t)

∂t
holonomic − rheonomic

arbitrary 0 nonholonomic − scleronomic

arbitrary arbitrary nonholonomic − rheonomic
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The virtual displacements δxi (all are instantaneous) are restricted by the
corresponding conditions

3N∑
i=1

ak,i (x1 . . . x3N , t) δxi = 0 (k = 1, 2, . . . r) . (5.38)

The argument for the derivation of the equations of motion is exactly the
same as has been used before: multiply each of the constraints with a suitable
Lagrange multiplier and add them to d’Alembert’s principle

3N∑
i=1

{miẍi − Fi − λ1a1,i − λ2a2,i . . . λrar,i} δxi = 0 .

Choose r multipliers so that r of the expressions in brackets vanish. The
remaining 3N − r displacements can be chosen freely, so that the remaining
expressions in brackets have to vanish as well. The result are the Lagrange
equations of the first kind for a system of N point particles, for instance for
r holonomic constraints

miẍi = Fi +
r∑

k=1

λk
∂fk

∂xi
(i = 1, 2, . . . , 3N)

fk (x1 . . . x3N , t) = 0 (k = 1, 2, . . . , r) . (5.39)

The corresponding equations are

miẍi = Fi +
r∑

k=1

λkak,i (x1 . . . x3N , t) (i = 1, 2, . . . , 3N) (5.40)

3N∑
i=1

ak,i (x1 . . . x3N , t)
dxi

dt
= −ak,0 (x1 . . . x3N , t) (k = 1, 2, . . . , r) ,

if the constraints are specified by r nonholonomic differential forms. Situa-
tions with a mixed set of constraints (holonomic and nonholonomic) could
also be considered.

The problem posed in each case is: find the 3N functions xi(t) and the
r Lagrange multipliers λk . The components of the constraining forces

Zi =
r∑

k=1

λk(x1 . . . x3N , t)ak,i (x1 . . . x3N , t) (i = 1, . . . 3N)

can be calculated once the system of equations of motion has been solved (in
general no easy task).

D’Alembert’s principle, the principle of virtual work
3N∑
i=1

(miẍi − Fi) δxi = 0 ,

principle
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and the explicit incorporation of the constraints lead to the Lagrange equa-
tions of the first kind. It is, however, possible to use the same information in a
different way. The Lagrange equations of the second kind are obtained if the
constraints are eliminated by a suitable choice of coordinates. The number
of equations, that have to be discussed, is reduced. In contrast to Lagrange I
there are only 3N − r (instead of 3N + r) equations to be considered in the
case of Lagrange II.

5.2.2.2 Applications. As the Lagrange equations of the second kind are in
general more easily applied, only two additional examples for the solution of
problems of motion in terms of Lagrange I will be presented.
Atwood’s machine can be described in the following fashion: Two masses
m1 and m2 are connected by a strong wire that runs over a pulley (Fig. 5.14).
The mass of the pulley and of the wire is neglected (not a necessity). The

 z

 2 m  g 1 m  g

 2 m 1 m

Fig. 5.14. Atwood’s machine

system of two masses starts to move under the influence of gravity. The
question to be answered is: how does it move?

It is sufficient to consider one coordinate, say the z - coordinate, which is
oriented in the direction of the gravitational force. The holonomic constraint,
which expresses the fact that the wire cannot be stretched, is

z1 + z2 = const.

This constraint leads to the Lagrange equations for the two masses

m1z̈1 = m1g + λ m2z̈2 = m2g + λ .

The multiplier can easily be eliminated

m1z̈1 − m1g = m2z̈2 − m2g .

As the constraint is equivalent to z̈2 = −z̈1 , this equation can be rewritten
as

z̈1 =
m1 − m2

m1 + m2
g .

The mass m1 moves with uniform acceleration (e.g. downward, provided
m1 > m2 ). The acceleration is reduced with respect to g. An explicit ex-
ample with m1 = 16 m2 = 14 yields z̈1 = g/15 and illustrates the purpose
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of the machine. The accelerated motion is slowed down and hence easier to
observe. The constraining force is the same for the two masses. It has the
value

Z1 = Z2 = λ =

{
m1z̈1 − m1g

m2z̈2 − m2g

}
= − 2m1m2

(m1 + m2)
g .

This force is equal for both masses and directed upwards. Another example
of a free-fall apparatus is addressed in Probl. 5.3.

The next example illustrates the application of d’Alembert’s principle to
static problems. A system of N stationary mass points is characterised by
the static principle of virtual work

N∑
i=1

F i · δsi = 0 . (5.41)

This relation allows the derivation of the principle of the lever (compare
Chap. 3.2.2). The lever is a planar system of two masses m1 and m2 with
a fixed separation l1 and l2 from a common axis of rotation (Fig. 5.15). In

 α

 2 l

 1 l

 2
 F

 1
 F

 2
 y

 2 x
 1

 y

 1 x

 y

 x

Fig. 5.15. The lever: coordinates

applying the static principle of virtual work the constraints

x2
1 + y2

1 = l21 and x2
2 + y2

2 = l22

have to be incorporated. An additional constraint is due to the fact, that the
two masses are rotated by the same angle

x1

y1
=

x2

y2
=

1
tanα

.

The three conditions can be expressed in virtual form (5.38)

x1δx1 + y1δy1 = 0 x2δx2 + y2δy2 = 0

y2δx1 − x2δy1 − y1δx2 + x1δy2 = 0 .

The stationary Lagrange equations (5.39) for the lever with the (planar)
active forces F 1 and F 2 are therefore

principle
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F1,x + λ1x1 + λ3y2 = 0

F1,y + λ1y1 − λ3x2 = 0

F2,x + λ2x2 − λ3y1 = 0

F2,y + λ2y2 + λ3x1 = 0 .

Elimination of λ1 from the first two and of λ2 from the last two equations
yields

F1,xy1 − F1,yx1 + λ3(y2y1 + x2x1) = 0

F2,xy2 − F2,yx2 − λ3(y2y1 + x2x1) = 0 .

By adding these two equations the lever condition

r1 × F 1 + r2 × F 2 = 0 ,

which has been discussed before (3.46), can be extracted. The sum of the
moments of the forces applied vanishes.

5.3 The Lagrange equations of the second kind
(Lagrange II)

The application of the Lagrange equations of the first kind, requires the solu-
tion of 3N + r equations for a system of N point particles with r constraints.
The increased number of equations is the price that has to be paid for the
explicit inclusion of the constraining forces. The goal of the formulation of
the Lagrange equations of the second kind, is:

1. The constraining forces should not appear explicitly in the equations of
motion.

2. The number of equations, that have to be solved, should correspond to
the number of the remaining degrees of freedom, that is 3N − r .

The simplest case of Lagrange equations of the second kind describes the
motion of one point particle, which therefore offers itself for the introduction
of this topic.

5.3.1 Lagrange II for one point particle

The method, on which Lagrange II is based, is the introduction of generalised
coordinates. This method has already been used, be it in a small way. In
Chap. 4 the motion of the mathematical pendulum or the Kepler problem
have not been discussed in terms of Cartesian but rather in terms of polar
coordinates. The question, that will be addressed now, is: how can an optimal
set of coordinates for a given problem of motion (with or without constraints)
be chosen?
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5.3.1.1 Generalised coordinates. A problem of motion can be formulated
in terms of any suitable set of coordinates q1(t), q2(t), q3(t) instead of just
Cartesian coordinates x(t), y(t), z(t) . A general, explicit form for transfor-
mations between the two sets of coordinates is

x(t) = x(q1(t), q2(t), q3(t), t)
y(t) = y(q1(t), q2(t), q3(t), t)
z(t) = z(q1(t), q2(t), q3(t), t)

(5.42)

or in abbreviation

xi = xi(q1, q2, q3, t) (i = 1, 2, 3) .

The possibility that the transformation depends explicitly on time is envis-
aged from the beginning. It will also be assumed that the inverse transfor-
mation exists

qμ = qμ(x1, x2, x3, t) (μ = 1, 2, 3) . (5.43)

Two examples may serve as an illustration of the possibilities.

• The coordinate transformation

x1 = q1 sin q2 cos q3 x2 = q1 sin q2 sin q3 x3 = q1 cos q2

was used in equation (2.74), p. 62. The generalised coordinates, that are
addressed here, are the spherical coordinates

q1 → r q2 → θ q3 → φ .

• The motion on a plane, which rotates uniformly with the angular velocity
ω about the y - axis (Fig. 5.16), can be formulated in terms of the following
generalised coordinates

q1 = z − x tanωt equation of the rotating plane

q2 =
√

(x2 + z2) distance from the y - axis

q3 = y y -coordinate .

(5.44)

The coordinates state that the point particle is moving on the rotating
plane (q1) and that it has the distance q2 from the q3 - axis. The inverse

x

y

z

Fig. 5.16. Plane, rotating uniformly about the y - axis
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transformation looks reasonably complicated. For instance the x - coordi-
nate is given by

x = cosωt
(
− q1 sinωt +

√
q2
2 − q2

1 cos2 ωt
)

.

The set of generalised coordinates is nonetheless very useful as the gener-
alised coordinate q1 expresses the constraint. This implies

q1 = 0 and therefore also q̇1 = q̈1 = 0 .

The coordinate q1 can be ignored in the discussion that follows. It is an
ignorable coordinate. The inverse transformation turns out to be quite
simple, if q1 = 0 is used

x = q2 cosωt y = q3 z = q2 sinωt .

The three Cartesian coordinates are represented (due to the constraint)
by two generalised coordinates (and the time development specified). The
number of generalised coordinates corresponds to the number of degrees of
freedom of the problem, the motion on a specified (though rotating) plane.

5.3.1.2 From d’Alembert’s principle to equations of motion in
terms of generalised coordinates. The derivation of a set of equations
of motion in terms of generalised coordinates will be based on d’Alembert’s
principle (Chap. 5.2) and the transformation between Cartesian and gener-
alised coordinates. A number of preparatory steps are required for the actual
derivation. They are all based on the application of the rules for partial dif-
ferentiation.

1. The total derivative of the Cartesian coordinates with respect to time can,
with the aid of the chain rule, be expressed in terms of the derivatives of
the generalised coordinates with time

ẋi =
dxi

dt
=

3∑
μ=1

∂xi

∂qμ
q̇μ +

∂xi

∂t
. (5.45)

The derivative of a generalised coordinate with respect to time, q̇μ , is
named a generalised velocity, or more precisely a component of
the generalised velocity.

2. The kinetic energy

T =
m

2

3∑
i=1

ẋ2
i

can be differentiated directly with respect to the generalised coordinates
and the generalised velocities
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∂T

∂qν
= m

3∑
i=1

∂ẋi

∂qν
ẋi (5.46)

∂T

∂q̇ν
= m

3∑
i=1

∂ẋi

∂q̇ν
ẋi . (5.47)

3. The relation between the partial derivatives

∂ẋi

∂q̇ν
=

∂xi

∂qν
(5.48)

can be extracted from (5.45). Insertion of (5.48) into (5.47) leads to

∂T

∂q̇ν
= m

3∑
i=1

∂xi

∂qν
ẋi . (5.49)

4. The total derivative of the expression (5.49) with respect to time has to
be calculated next

d
dt

(
∂T

∂q̇ν

)
= m

3∑
i=1

{
ẍi

∂xi

∂qν
+ ẋi

d
dt

(
∂xi

∂qν

)}
. (5.50)

5. The order of the differentiation can be interchanged in the last term on
the right hand side of (5.50), if the equations representing the original
transformation is twice continuously differentiable. This assertion can be
demonstrated with the steps

d
dt

(
∂xi

∂qν

)
=

3∑
μ=1

∂2xi

∂qμ∂qν
q̇μ +

∂2xi

∂t∂qν
.

Interchange of the sequence of the partial differentiation according to the
assumption gives

d
dt

(
∂xi

∂qν

)
=

∂

∂qν

{
3∑

μ=1

∂xi

∂qμ
q̇μ +

∂xi

∂t

}
.

The expression in the brackets is just ẋi (see (5.45)), so that

=
∂ẋi

∂qν

follows.
6. The second term in (5.50) can be written with this result according to

(5.46) as

m

3∑
i=1

ẋi
d
dt

(
∂xi

∂qν

)
= m

3∑
i=1

ẋi
∂ẋi

∂qν
=

∂T

∂qν
. (5.51)

The final goal of this preparatory discussion can, after sorting the result
of (5.50), be given in the form

The Lagrange equations of the second kind (Lagrange II)5.3
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m
3∑

i=1

ẍi
∂xi

∂qν
=

d
dt

(
∂T

∂q̇ν

)
− ∂T

∂qν
. (5.52)

D’Alembert’s principle can be cast into a suitable form with the aid of (5.52).
The starting point is the Cartesian expression (5.37)

3∑
i=1

(mẍi − Fi)δxi = 0 . (5.53)

A relation between the virtual displacements in the Cartesian and the gen-
eralised coordinates is needed. The total differential of the transformation
(5.42)

dxi =
3∑

μ=1

∂xi

∂qμ
dqμ +

∂xi

∂t
dt

can be used for this purpose. A replacement of the real (d) displacements by
the virtual (δ) displacements gives

δxi =
3∑

μ=1

∂xi

∂qμ
δqμ , (5.54)

as δt = 0 by definition. D’Alembert’s principle is, in this fashion, transcribed
into∑

μ

{∑
i

(
mẍi

∂xi

∂qμ
− Fi

∂xi

∂qμ

)}
δqμ = 0 . (5.55)

At this point the purpose of the preparative steps 1 to 6 should become appar-
ent. The first term in (5.55) can be expressed by the derivatives of the kinetic
energy, using (5.52). The second term corresponds to a transformation of the
Cartesian components of the force Fi to generalised force components Qμ

Qμ =
3∑

i=1

Fi
∂xi

∂qμ
(μ = 1, 2, 3) . (5.56)

The final result of the argument is
3∑

μ=1

{
d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ

}
δqμ = 0 (5.57)

if the definition of Qμ is used to abbreviate matters and if the expression
(5.52) is inserted for the first term. Three different cases can be distinguished:

1. The point particle moves freely. There are no constraints. In this case the
three virtual displacements δqμ are independent. D’Alembert’s principle
can only be satisfied if each of the expressions in curly brackets vanishes

d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ = 0 (μ = 1, 2, 3) . (5.58)
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2. There exists one constraint. The simplest case is a holonomic constraint,
f(x, y, z, t) = 0, so that one of the generalised coordinates can be chosen
to be

q1 = f(x, y, z, t) = 0 .

The corresponding virtual displacement vanishes (δq1 = 0) , while the
remaining displacements δq2 and δq3 can be chosen freely. This leads to
the equations of motion

d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ = 0 (μ = 2, 3) . (5.59)

3. A suitable choice of the generalised coordinates for a situation with two
holonomic constraints is

q1 = f1(x1, x2, x3, t) = 0 q2 = f2(x1, x2, x3, t) = 0 .

Only one equation of motion remains, which depends on the coordi-
nate q3 .

The equations of motion

d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ = 0 (μ = 1, . . .) (5.60)

are the Lagrange equations of the second kind for the motion of one
point particle with, respectively without, constraints. The goal stated in
the beginning has been reached: Constraining forces do not appear explicitly.
The number of equations corresponds to the number of degrees of freedom.
These equations, a basic set of equations of mechanics, represent according
to their genesis a variant of d’Alembert’s principle which is oriented towards
practical applications.

5.3.1.3 Solution of the equations of motion (Lagrange II). The dis-
cussion of these equations will be initiated with two illustrative examples.
In order to apply the Lagrange equations (5.60) a canonical set of standard
steps is usually followed.

• Begin with the choice of generalised coordinates

xi = xi(q1, q2, q3, t) , (i = 1, 2, 3)

and calculate the time derivatives

ẋi =
∑

μ

∂xi

∂qμ
q̇μ +

∂xi

∂t
= vi(q1, . . . , q̇1, . . . , t) .

The right hand side of these equations contains only expressions that de-
pend on the generalised coordinates qμ (possibly in part ignorable), on the
generalised velocities q̇μ and on the time.

The Lagrange equations of the second kind (Lagrange II)5.3
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• The expression for the Cartesian components of the velocity are inserted
into the expression for the kinetic energy

T =
m

2

3∑
i=1

ẋ2
i .

The result is an expression for the kinetic energy of the form

T = T (q1, q2, q3, q̇1, q̇2, q̇3, t) .

• The derivatives of T with respect to the generalised coordinates and the
generalised velocities

∂T

∂qμ
,

d
dt

(
∂T

∂q̇μ

)
are required for the actual assembly of the equations of motion. In addition,
the components of the generalised force Qμ have to be calculated according
to Eq. (5.56).

• The set of equations obtained with these steps represent a set of differen-
tial equations for the nonignorable functions qμ(t) . The time dependence
of the Cartesian coordinates xi(t) can, if desired, be calculated with the
transformation (5.42) after the solution of these equations.

5.3.1.4 First examples for the solution. The first example for the il-
lustration of this scheme is the following problem: calculate the motion of a
point particle m, which moves on the surface of a cylinder

x2 + y2 − R2 = 0

under the influence of a harmonic central force

F = −kr = −k(x, y, z) .

(a) (b)

F
m

z

y

x

the force vector

3
q

2
q

1q

z

y

x

generalised coordinates

Fig. 5.17. Point particle m on the surface of a cylinder under the influence of a
harmonic central force

The force vector points at each instant of time in the direction of the origin
of the coordinate system (see Fig. 5.17a).
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The first step is the choice of the generalised coordinates. There is some
freedom, but it is best to proceed according to the rule: the more appropriate
the choice, the simpler are the differential equations which will finally have
to be solved. The most adept choice uses, in most of the cases, the symmetry
of the problem and (if given) the constraints. The choice is therefore

q1 = x2 + y2 − R2 = 0 (the constraint)

and because of the cylinder symmetry (Fig. 5.17b)

q2 = arctan
y

x
(angle)

q3 = z (coordinate, height above the x - y plane)
(5.61)

in the present example. The inverse transformation is

x = R cos q2 y = R sin q2 z = q3 (5.62)

because of q1 = 0 . The time derivatives of the Cartesian coordinates are

ẋ = −R q̇2 sin q2 ẏ = R q̇2 cos q2 ż = q̇3 . (5.63)

They are used to find the kinetic energy in terms of generalised coordinates

T =
m

2
(ẋ2 + ẏ2 + ż2) =

m

2
(R2q̇2

2 + q̇2
3) .

Next, the required (partial) derivatives for the kinetic energy are calculated

∂T

∂q2
=

∂T

∂q3
= 0

and

∂T

∂q̇2
= mR2q̇2 −→ d

dt

(
∂T

∂q̇2

)
= mR2q̈2

∂T

∂q̇3
= mq̇3 −→ d

dt

(
∂T

∂q̇3

)
= mq̈3 .

The calculation of the generalised force uses the relations

∂x

∂q2
= −R sin q2

∂y

∂q2
= R cos q2

∂z

∂q2
= 0

∂x

∂q3
= 0

∂y

∂q3
= 0

∂z

∂q3
= 1 .

The component Q1 vanishes, as the transformation (5.61) does not contain
the coordinate q1. The other components are

Q2 = Fx
∂x

∂q2
+ Fy

∂y

∂q2
+ Fz

∂z

∂q2

= −k{(R cos q2)(−R sin q2) + (R sin q2)(R cos q2) + 0}

The Lagrange equations of the second kind (Lagrange II)5.3
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= 0

Q3 = Fx
∂x

∂q3
+ Fy

∂y

∂q3
+ Fz

∂z

∂q3

= −kq3 .

The Lagrange equations of motion for the problem posed are

mq̈2 = 0
mq̈3 + kq3 = 0 .

They are astonishingly simple. The general solution can be given directly

q2(t) = C1 + C2t

q3(t) = C3 cosω0t + C4 sinω0t with ω0 =

√
k

m
.

(5.64)

The quantity q2 is the azimuthal angle, the quantity q3 is the z - coordinate
of a point on the surface of the cylinder. The angular motion is uniform, the
motion in the z - direction is a harmonic oscillation. The superposition of
these two forms of motion corresponds to a trigonometric curve (the oscil-
lation) which is spread on the surface of the cylinder (the uniform rotation)
(Fig. 5.18).

Fig. 5.18. Motion on the surface of a cylinder: solution

The motion can be studied more closely with a choice of a special set of
initial conditions, as e.g.

x(0) = R y(0) = 0 z(0) = h

vx(0) = 0 vy(0) = v0 vz(0) = 0 .

The initial position is (naturally) on the cylinder, with a height h above the
x - axis. The initial velocity is a vector in the y - direction. The transformation
(5.61) gives the initial values of the generalised coordinates as

q2(0) = 0 q3(0) = h .

and the initial generalised velocities

q̇2(0) = v0/R q̇3(0) = 0 .

The special solution, which follows after the determination of the constants
of integration with these specifications, are

q2(t) =
v0

R
t q3(t) = h cosω0t . (5.65)
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The corresponding form of the solution in Cartesian coordinates is

x(t) = R cos
(v0

R
t
)

y(t) = R sin
(v0

R
t
)

z(t) = q3(t) . (5.66)

A cosine curve is spread out on the surface of the cylinder. As the angular
frequency of the rotation ω = v0/R (corresponding to a time T = 2πR/v0

for one rotation) and the angular frequency of the oscillation ω0 =
√

k/m
are not necessarily matched, the cosine curve on the cylinder does not close
in general. Some special cases are:

The solution (5.65) represents a uniform circular motion of the mass in the
x - y plane for h = 0 . The solution describes a harmonic oscillation in the
z - direction about the point (x, y, z) = (R, 0, h) for v0 = 0 .

The next example is a problem which could not be solved easily via the
Lagrange equations of the first kind. The task is the calculation of the mo-
tion of a point particle m under the influence of gravity F = (0, 0,−mg) .
The particle moves on a helix which is lifted or lowered uniformly in the z -
direction. A stationary helix (Fig. 5.19) is characterised by the equations

h

z

yx
Fig. 5.19. The helix

x2 + y2 − R2 = 0 (5.67)

z =
h

2π
φ =

h

2π
arctan

y

x
(5.68)

(see Chap. 2, p. 36). The first equation (5.67) describes a cylindrical surface,
the second (5.68) the helix on this surface. The angle φ is increased by 2π
after a full rotation. The z - coordinate changes by the pitch of the screw h
for each turn. The second equation has to be replaced by

z =
h

2π

(
arctan

(y

x

)
± ωt

)
ω =

2π
T

(5.69)

for a uniformly rotating helix. The positive sign corresponds to a helix, which
is lifted, the negative sign to a helix, which is lowered.

An obvious choice of the ignorable coordinates is

q1 = x2 + y2 − R2 = 0 (5.70)

The Lagrange equations of the second kind (Lagrange II)5.3
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q2 = z − h

2π

(
arctan

(y

x

)
± ωt

)
= 0 . (5.71)

These coordinates will not appear in the equations of motion. For the cha-
racterisation of the actual motion only the coordinate

q3 = z (5.72)

plays a role. In order to obtain the inverse of this transformation between
the Cartesian and the generalised coordinates, the relation (5.71) for the
coordinate q2 has to be resolved in terms of the angle φ(t)

φ(t) = arctan
y(t)
x(t)

=
2π
h

q3(t) ∓ ωt . (5.73)

This expression is then inserted into the relations between cylinder and Carte-
sian coordinates ((2.66), p. 61)

x(t) = R cosφ(t) y(t) = R sinφ(t) z(t) = q3(t) . (5.74)

For a problem with two constraints only one generalised coordinate has to
be considered. One of the holonomic constraints is rheonomic, so that the
equation for the transformation depend explicitly on time. In order to express
the kinetic energy as a function of the generalised coordinates and velocities
the time derivatives

ẋ = −Rφ̇ sinφ ẏ = Rφ̇ cosφ ż = q̇3

have to be used. The kinetic energy is transformed into

T =
m

2

[
R2

(
2π
h

q̇3 ∓ ω

)2

+ q̇3
2

]
(5.75)

because of

φ̇ =
2π
h

q̇3(t) ∓ ω

The only component of the generalised force, which does not vanish in this
example, is

Q3 = Fz
∂z

∂q3
= −mg , as Fx = Fy = 0 .

The derivatives
∂T

∂q3
= 0

∂T

∂q̇3
= m

[
2πR2

h

(
2π
h

q̇3 ∓ ω

)
+ q̇3

]
and

d
dt

(
∂T

∂q̇3

)
= mq̈3

(
4π2R2

h2
+ 1

)
are needed in order to set up the equation of motion
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mq̈3

(
4π2R2

h2
+ 1

)
+ mg = 0 . (5.76)

A simple rearrangement gives

q̈3 = − gh2

4π2R2 + h2
= −geff .

The motion on a uniformly rotating helix under the influence of gravity is a
uniformly accelerated falling motion. The acceleration is reduced with respect
to the free fall. The reduction is larger for a larger radius. The reduction is de-
creased with increasing pitch. The effective acceleration can also be expressed
in the form

geff =
g(

1 +
4π2R2

h2

) .

The angular velocity, which characterises the uniform rotation, does not occur
in the equation of motion. The time dependent constraining forces do not do
any work while the mass point moves on a uniformly rotating helix (compare
the problem of a uniformly moving inclined plane in Chap. 5.1, p. 201 for the
case h(t) = v0 t).

The general solution of the equation of motion (5.76) is

q3(t) = C1 + C2t − 1
2
gefft2 .

Initial conditions for the generalised coordinates, as e.g.

q3(0) = 0 q̇3(0) = 0 ,

correspond to the initial conditions

x(0) = R y(0) = 0 z(0) = 0
ẋ(0) = 0 ẏ(0) = ∓Rω ż(0) = 0

for the Cartesian coordinates. The mass point starts on the helix and moves
with it. The initial conditions require C1 = C2 = 0, so that the explicit
solution in Cartesian coordinates turns out to be

x(t) = +R cos
[

πhg

4π2R2 + h2
t2 ± ωt

]

y(t) = −R sin
[

πhg

4π2R2 + h2
t2 ± ωt

]
(5.77)

z(t) = −1
2

[
gh2

4π2R2 + h2

]
t2 .

The fact, that this solution is in agreement with the original choice of the
generalised coordinates, that is q1(t) = q2(t) = 0 , can be verified directly.

The Lagrange equations of the second kind (Lagrange II)5.3
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5.3.1.5 Constraining forces and Lagrange II. The constraining forces
do not feature in the Lagrange equations of the second kind. These forces
can, however, be calculated with a direct procedure after the solution of
these equations has been obtained: set up the problem according to the La-
grange equations of the first kind, insert the solution found with the aid of
Lagrange II, determine the Lagrange multipliers and hence the constraining
forces.

A calculation of the constraining forces for the two examples just discussed
provides an example for the application of this procedure.

• The constraint of the first problem (see p. 220) x2 + y2 −R2 = 0 leads
with (5.33) to the (Lagrange I) equations of motion

mẍ = −kx + 2λx mÿ = −ky + 2λy mz̈ = −kz . (5.78)

The first equation can be resolved in the form

λ =
1
2

(
mẍ

x
+ k

)
.

Insertion of the solution (5.65) with the initial conditions specified above

x = R cos
(

v0t

R

)
y = R sin

(
v0t

R

)
z = h cosω0t ,

yields the result

λ =
1
2

(
k − m

(v0

R

)2
)

for the multiplier λ . The second equation of motion is satisfied automati-
cally. The constraining force is

Z =
((

k − m
v2
0

R2

)
R cos

(
v0t

R

)
,

(
k − m

v2
0

R2

)
R sin

(
v0t

R

)
, 0
)

.

The constraining force changes periodically with the angular coordinate
q2(t) . It is directed towards the interior or the exterior of the cylinder
depending on the relative magnitude of the force constant and the velocity
(in relation to the mass and the radius).

• The constraints

x2 + y2 − R2 = 0 and z − h

2π
(arctan

y

x
± ωt) = 0

of the second example (p. 223) and the ansatz

Z = λ1∇f1 + λ2∇f2

for the constraining forces lead to equations of motion (5.35) of the form

mẍ = 2λ1x +
h

2πR2
yλ2 mÿ = 2λ1y − h

2πR2
xλ2

mz̈ = −mg + λ2 . (5.79)
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The solution of the problem of motion is given in (5.77)

x = R cosφ y = R sinφ z = −1
2
gefft2

with

φ = −
(π

h
gefft2 ± ωt

)
.

The Lagrange multiplier λ2 can be extracted from the third equation of
motion in a direct fashion

λ2 = m(g − geff) =
4π2R2

4πR2 + h2
mg =

4π2R2

h2
mgeff .

Any of the first two equations of motion in (5.79) then yields for λ1

λ1 = −m

2
φ̇2 = −m

2

(
2π
h

gefft ± ω

)2

.

5.3.1.6 Conservative systems. A very useful reformulation of the La-
grange equations of the second kind can be given provided the constraints
are holonomic and the acting forces are conservative. The Cartesian compo-
nents of the active force can be represented in this case as a gradient of the
potential energy U

F = −∇U(x, y, z) .

The components of the generalised force can, using the chain rule for partial
differentiation, be written in the form

Qμ =
∑

i

Fi
∂xi

∂qμ
= −

∑
i

∂U

∂xi

∂xi

∂qμ
= − ∂U

∂qμ
(μ = 1, . . .) . (5.80)

This equation shows that the components of the conservative, generalised
force can be calculated by first expressing the potential energy in terms of
the generalised coordinates

U(x1, x2, x3) −→ U(q1, q2, q3, t)

and then calculating the force components as generalised gradients.
The potential energy of the first example (p. 220) discussed in the previous

sections is

U =
k

2
(x2 + y2 + z2) .

With the generalised coordinates (5.62)

x = R cos q2 y = R sin q2 z = q3

this is transformed into

U =
k

2
(R2 + q2

3) .

The Lagrange equations of the second kind (Lagrange II)5.3
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This yields, as before, the components of the generalised force

Q1 = Q2 = 0 Q3 = −kq3 .

The relation between the components of the generalised force (5.80) and
the potential energy can also be employed if the potential energy depends ex-
plicitly on time after the transformation to generalised coordinates. A variant
of the present example is the calculation of the motion of the point particle
on a ’pulsating’ cylinder (Fig. 5.20). The constraint is in this case

m

z

y

x Fig. 5.20. Pulsating cylinder

x2 + y2 − R(t)2 = 0 ,

an example for the specification of the pulsation could be

R(t) = R0 + a sin bt .

The potential energy has the same form as before

U =
k

2
(R(t)2 + q2

3) ,

so that, in spite of the time dependence of the potential energy, the general
force comprises again only one component

Q = (Q1, Q2, Q3) = (0, 0, −kq3) .

The time dependence of the transformation leads, however, via the kinetic
energy, to a modified set of equations of motion. The time derivatives of the
transformations are

ẋ = Ṙ cos q2 − Rq̇2 sin q2 ẏ = Ṙ sin q2 + Rq̇2 cos q2 ż = q̇3

in the case of the pulsating cylinder instead of (5.63). This gives

T =
m

2
(Ṙ2 + R2q̇2

2 + q̇3
2)

and
∂T

∂q̇2
= mR2q̇2 and

d
dt

(
∂T

∂q̇2

)
= m(2RṘq̇2 + R2q̈2) .

The differential equations for the motion on the pulsating cylinder are
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q̈2 + 2
Ṙ

R
q̇2 = 0 q̈3 +

k

m
q3 = 0 .

The equations of motion for the two generalised coordinates are still uncou-
pled. The angular motion is, however, not uniform. A kind of ’frictional term’
appeared due to the time dependence of the constraint. The differential equa-
tion for q2 can be solved with standard methods ( Probl. 5.7, see also
Math.Chap. 6.3)

q2(t) = C1 + C2

∫ t

dt1 exp

[
−2

∫ t1 Ṙ(t2)
R(t2)

dt2

]

= C1 + C2

∫ t

dt1
1

R(t1)2
.

If the radius of the cylinder does not change with time (Ṙ = 0), the solution
of the original problem (p. 220) is recovered

q2(t) = C1 +
C2

R2
t = C1 + C ′

2t .

5.3.1.7 The Lagrange function. A standard version of the Lagrange equa-
tion is obtained if the components of the generalised force can be represented
in terms of a potential function. For this purpose a Lagrange function (also
termed Lagrangian) is defined

L = T (q1, q2, q3, q̇1, q̇2, q̇3, t) − U(q1, q2, q3, t) . (5.81)

This quantity has the dimension of an energy, but is not identical with the
energy of the systems. The quantity, which is more closely associated with the
energy, is the Hamiltonian (or Hamilton function, see (5.102) and Chap. 5.4).
The Lagrangian is nonetheless a basic element of theoretical physics. It plays
a prominent role from mechanics to the formulation of quantum field theories.

The following derivatives of the Lagrange function (5.81) are of interest:
the potential energy depends only on the generalised coordinates and the
time, so that the derivative with respect to the generalised velocities vanishes

∂L

∂q̇μ
=

∂T

∂q̇μ

∂U

∂q̇μ
= 0 .

The derivatives with respect to the generalised coordinates are

∂L

∂qμ
=

∂T

∂qμ
− ∂U

∂qμ
=

∂T

∂qμ
+ Qμ .

The original version (5.60) of the Lagrange equations of the second kind

d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ = 0 (μ = 1, . . .)

can be recast in the ’standard form’

The Lagrange equations of the second kind (Lagrange II)5.3
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d
dt

(
∂L

∂q̇μ

)
− ∂L

∂qμ
= 0 (μ = 1, . . .) (5.82)

if these relations are used. The original form of the equations of motion (5.60)
is valid for holonomic constraints and arbitrary forces. The second form (5.82)
can only be applied for holonomic constraints and conservative forces.

5.3.1.8 Generalised potentials. It is possible to define a Lagrange func-
tion under certain conditions, even if the forces are not conservative. The
corresponding potential function is referred to as a generalised potential.
One example, that may serve as an illustration of this point, is a situation,
in which, besides conservative contributions to F , dissipative parts, as e.g. a
velocity dependent force with components F dis

i = −κiẋi, are present. The dis-
sipative part of the generalised forces, calculated according to the definition,
is

Qdis
μ =

3∑
i=1

F dis
i

∂xi

∂qμ
= −

3∑
i=1

κiẋi
∂xi

∂qμ

in this case. The relation (5.48)

∂xi

∂qμ
=

∂ẋi

∂q̇μ
,

which follows from the transformation (5.42), can be used here to write

Qdis
μ = −

3∑
i=1

κiẋi
∂ẋi

∂q̇μ
,

or by sorting the partial derivative

Qdis
μ = − ∂

∂q̇μ

[
3∑

i=1

κi

2
ẋ2

i

]
.

This result suggests the definition of a function, which is called (Rayleigh’s)
dissipation function

R =
3∑

i=1

κi

2
ẋ2

i = R(q1, . . . ., q̇1, . . . ., t) . (5.83)

The Lagrange equations of the second kind for a conservative and a dissipa-
tive contribution can be written with this function as

d
dt

(
∂L

∂q̇μ

)
− ∂L

∂qμ
+

∂R

∂q̇μ
= 0 . (5.84)

The argument can be generalised: the Lagrange equations can be used in
the standard abbreviated form (5.82) with the Lagrange function

L = T − U , (5.85)
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if it is possible to define a potential function

U = U(q1, . . . , q̇1, . . . , t) , (5.86)

so that the generalised forces can be expressed as

Qμ = −
(

∂U

∂qμ
− d

dt

(
∂U

∂q̇μ

))
. (5.87)

The quantity U is the generalised potential. This potential can, as indi-
cated, depend on the generalised coordinates, the generalised velocities and
on time.

It is not possible to choose ignorable generalised coordinates, if nonholo-
nomic constraints (or holonomic plus nonholonomic constraints) are present,
as there exists no direct functional relationship between the Cartesian coor-
dinates. The constraints in virtual form (5.38)

3∑
i=1

ak,i(x1, x2, x3, t) δxi = 0, (k = 1, . . .)

can, however, be expressed in terms of generalised coordinates
3∑

μ=1

3∑
i=1

ak,i(q1, q2, q3, t)
∂xi

∂qμ
δqμ =

3∑
μ=1

Ak,μ(q1, q2, q3, t)δqμ .

These conditions cannot be incorporated directly into the equations of the
type Lagrange II, but have to be added with Lagrange multipliers, so that a
mixed representation of the form

d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ −

∑
k

λkAk,μ = 0 (5.88)

is obtained.

5.3.2 Lagrange II and conservation laws for one point particle

Conservation laws play a special role in Newton’s formulation of mechanics.
For this reason the question, in which way do conservation laws enter into
the Lagrange formulation, ought to be asked and answered.

5.3.2.1 Generalised momenta in theory and practical applications.
It will be assumed in this section that only conservative forces act on the
point particle and that only holonomic constraints apply. The equations of
motion are then (see (5.82))

d
dt

(
∂L

∂q̇μ

)
− ∂L

∂qμ
= 0 (μ = 1, . . .) . (5.89)

The relation

The Lagrange equations of the second kind (Lagrange II)5.3
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∂L

∂qν
= 0

is valid according to the definition of the partial derivative, if the Lagrange
function does not depend on the generalised coordinate qν . If this is the case,
one finds

d
dt

(
∂L

∂q̇ν

)
= 0 or

∂L

∂q̇ν
= const.

The partial derivative of the Lagrange function with respect to the corre-
sponding generalised velocity is constant in time, in other words a conserved
quantity. This partial derivative of the Lagrange function is the generalised
momentum pν

pν =
∂L

∂q̇ν
. (5.90)

The name implies a generalisation of the Cartesian momentum. The deriva-
tive with respect to one of the velocity components for the Lagrange function

L =
m

2
(ẋ2

1 + ẋ2
2 + ẋ2

3) − U(x1, x2, x3)

is indeed

pi =
∂L

∂ẋi
= mẋi .

The generalised momentum and the standard momentum are identical in the
case of Cartesian coordinates.

A coordinate qν , which does not appear in the Lagrange function, is called
a cyclical coordinate. The conservation law, which follows on the basis of
the definitions stated above, can be formulated as follows:

The generalised momentum is a conserved quantity if the
corresponding generalised coordinate is cyclical

or in mathematical form

∂L

∂qν
= 0 −→ pν =

∂L

∂q̇ν
= const. (5.91)

An example is the discussion of the motion of a point particle without
constraints in terms of spherical coordinates. The transformation between
the Cartesian coordinates and the coordinates r, θ, ϕ , (using the original
notation, see (2.74), p. 62), is

x = r cosϕ sin θ y = r sinϕ sin θ z = r cos θ .

The simplest way to express the kinetic energy in terms of these coordinates is
to use the result ((2.81), p. 64) for the appropriate generalised velocities and
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consider the scalar product of the velocity vector with itself. The resulting
Lagrange function

L = T − U =
m

2
(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ) − U(r, θ, ϕ) (5.92)

leads to the generalised momenta

pr =
∂L

∂ṙ
= mṙ pθ =

∂L

∂θ̇
= mr2θ̇ pϕ =

∂L

∂φ̇
= mr2ϕ̇ sin2 θ . (5.93)

The interpretation of these generalised momenta is based on dimensional
considerations: A generalised momentum has the usual dimension [ML/T ] if
the generalised coordinate corresponds to a length. The generalised momen-
tum corresponds to an angular momentum with the dimension [ML2/T ],
if the generalised coordinate is an angle. The dimensional statement is in
general

pν =
∂L

∂q̇ν
−→ [pν · qν ] = [E T ]

on the basis of the definition (5.91). The quantity ’energy multiplied with
time’ is an action, so that the dimension of the product of a generalised
coordinate with a generalised momentum is

[p · q] =
[
ML2

T

]
−→ action .

The nature of the generalised momentum associated with a given coordinate
can be gleaned from this relation.

The Lagrange function (5.92) is, for instance, relevant for the discussion
of the spherical pendulum. A mass point m is attached to a rigid (weightless)
rod, so that it can move on a surface of a sphere under the influence of simple
gravity (Fig. 5.21). The distance of the mass from the point of suspension is

z

θ
l

x

y

Fig. 5.21. The spherical pendulum: geometry

an ignorable coordinate in this problem as r = l and ṙ = 0 . The potential
energy is

U = mgz = mgl cos θ .

The Lagrange equations of the second kind (Lagrange II)5.3
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The coordinate system is chosen as in Fig. 5.21, so that U(z = 0) = 0 . The
Lagrange function of the spherical pendulum can therefore be written as

L =
ml2

2
(θ̇2 + ϕ̇2 sin2 θ) − mgl cos θ . (5.94)

Clearly the angle ϕ is a cyclical coordinate, so that the angular momentum

pϕ = ml2ϕ̇(t) sin2 θ(t) = C (5.95)

is conserved. The following modes of motion are possible:

• The initial condition ϕ̇(0) = 0 leads to ϕ̇(t) = 0 . The pendulum swings in
a plane which is characterised by the initial value of the azimuthal angle,
that is by ϕ(0) . This motion corresponds (note the change of the notation
for the coordinates) to the motion of the mathematical pendulum, which
has been discussed in Chap. 4.2.1 in terms of the Newtonian formulation.

• The angular velocity ϕ̇(t) is not equal to zero, if the initial angular velocity
ϕ̇(0) is not and if the initial values of the angle θ are not equal to 0 or π

ϕ̇(t) �= 0 if ϕ̇(0) �= 0 and θ(0) �= 0, π .

The equation of motion for the angle θ differs from that of the mathematical
pendulum in this case.

The Lagrange equation for the coordinate θ with the replacement of ϕ̇(t)
by the conservation law (5.95) takes the form

ml2θ̈ − C2

ml2
cos θ

sin3 θ
− mgl sin θ = 0 .

This equation corresponds to the time derivative of the conserved energy

ml2

2

(
θ̇2 +

C2

m2l4 sin2 θ

)
+ mgl cos θ = E0 . (5.96)

The energy within the Lagrangian formulation is, as outlined in the next
section, under certain conditions identical with the Hamiltonian. For the
moment the only point of interest is the solution of the equation (5.96). This
differential equation takes the form(

dq

dt

)2

=
2

ml2
(E0 − mglq) (1 − q2) − C2

m2l4
≡ Ueff(q)

after the substitution of the variable q

q = cos θ q̇ = −θ̇ sin θ .

It can be treated further with the method of separation of variables. Using
the abbreviations

a =
2E0

ml2
b =

2g
l

c =
C2

m2l4

one finds the ’solution’
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t = ±
∫ q

q(0)

dq′
1√

Ueff(q′)
= ±

∫ q

q(0)

dq′

[(a − bq′)(1 − q′2) − c]1/2
. (5.97)

The effective potential in (5.97) is a polynomial of third degree. The conse-
quence is: the integral on the right hand side of (5.97) is an elliptic integral.

It is possible to analyse just the potential Ueff(q) if a more qualitative
discussion is thought to be sufficient. The quantity Ueff has to be positive
in the interval −1 < q < 1 or a part thereof. The effective potential Ueff(q)
is negative for large negative values of q , as the parameter b is greater than
zero. The function Ueff(q) is sketched in Fig. 5.22. In the relevant interval one

1 –1

 eff U

 q

Fig. 5.22. The spherical pendulum: effective potential

finds two zeros of the polynomial (q1 and q2), which corresponds to circles of
latitude with

θ1 = arccos q1 θ2 = arccos q2

between which the pendulum will move.
The conservation law (5.95) involving the angle ϕ can be rewritten as

dϕ

dq
=

dϕ

dt

dt

dq
=

C

m l2(1 − q2)
1√

Ueff(q)
.

Integration also leads to an elliptic integral (of the third kind)

ϕ(q) − ϕ(q(0)) =
C

m l2

∫ q

q(0)

dq′√
Ueff(q′)

1
(1 − q′2)

. (5.98)

While the pendulum swings between the two circles of latitude, the azimuthal
angle changes. The pendulum performs a precessional motion. The motion
of the spherical pendulum is periodic in the sense that it returns (similar to
the pattern found for the mathematical pendulum in Chap. 4.2.1) with the
sequence

θ1
τ−→ θ2

τ−→ θ1
τ−→ θ2

τ−→ θ1

to the original position. The four time intervals indicated are equal as de-
manded by (5.97). The period is therefore given by

T = 4
∫ q2

q1

dq′√
Ueff(q′)

. (5.99)

The Lagrange equations of the second kind (Lagrange II)5.3
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The corresponding angle Δϕ, by which the pendulum precesses during this
time interval, can be calculated with the aid of (5.98).

5.3.2.2 Energy and Hamilton’s function. As the Lagrange function does
not represent the total energy, energy conservation has to be discussed ex-
plicitly. The Lagrangian for one mass point is in general a function of up to
7 variables

L = L(q1, q2, q3, q̇1, q̇2, q̇3, t) .

The total derivative of this function with respect to time is

dL

dt
=

3∑
μ=1

[
∂L

∂qμ
q̇μ +

∂L

∂q̇μ
q̈μ

]
+

∂L

∂t
. (5.100)

The factor of q̇μ can be replaced with the Lagrange equation (5.82)

∂L

∂qμ
q̇μ =

(
d
dt

(
∂L

∂q̇μ

))
q̇μ

and the terms in the square brackets in (5.100) can be condensed, so that the
relation

dL

dt
=

d
dt

[
3∑

μ=1

(
∂L

∂q̇μ

)
q̇μ

]
+

∂L

∂t

follows. Introduction of the generalised momentum in this equation gives the
central result

d
dt

[
3∑

μ=1

pμq̇μ − L

]
= −∂L

∂t
. (5.101)

The expression in the brackets is another central element of classical mecha-
nics. The quantity

H =
3∑

μ=1

pμq̇μ − L (5.102)

is the Hamiltonian or Hamilton function. Two properties of this function
can be stated directly:

• the Hamiltonian has (as the Lagrangian) the dimension of energy.
• Equation (5.101) implies that the Hamiltonian is a conserved quantity if

the Lagrangian does not depend explicitly on time

∂L

∂t
= 0 → dH

dt
= 0 → H(t) = H(0) . (5.103)

Not quite as obvious is the statement
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• The Hamiltonian is identical with the total energy of the system, if the
system is conservative and if the transformation between the Cartesian
and the generalised coordinates does not depend explicitly on time

H ≡ E if
∂U

∂q̇μ
= 0

and xi = xi(q1, q2, q3) −→ ∂xi

∂t
= 0 .

(5.104)

This statement follows from one of the properties of the kinetic energy

T =
m

2

∑
i

ẋ2
i .

With the assumptions stated and with the derivative of the transformation
(5.45)

ẋi =
∑

μ

∂xi

∂qμ
q̇μ

the kinetic energy can be written in the form

T =
m

2

∑
i

∑
ν,μ

∂xi

∂qμ

∂xi

∂qν
q̇ν q̇μ .

The kinetic energy is a homogeneous function of second degree in the
generalised velocities. For homogeneous functions of the m -th degree, which
are characterised by

f(λx1, · · · , λxn) = λm f(x1, · · · , xn) ,

the theorem of Euler
n∑

i=1

xi
∂f

∂xi
= mf

applies. This theorem gives for the kinetic energy∑
μ

q̇μ
∂T

∂q̇μ
= 2T .

The generalised momentum (5.90) is characterised by the derivative of the
kinetic energy alone

pμ =
∂L

∂q̇μ
=

∂T

∂q̇μ

as a consequence of the assumption ∂U/∂q̇μ = 0 . This leads to∑
μ

q̇μ
∂T

∂q̇μ
=
∑

μ

pμq̇μ = 2T

and the Hamiltonian is, under the assumptions stated, identical with the
energy of the point particle

The Lagrange equations of the second kind (Lagrange II)5.3
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H =
∑

μ

pμq̇μ − L = 2T − T + U = T + U = E . (5.105)

Some additional remarks concerning the Hamiltonian are:

1. The assumptions, which have been stated, are sufficient but not necessary.
The Hamiltonian can represent the total energy even if the forces are not
conservative and if the transformation depends on time.

2. The question, whether the Hamiltonian represents the total energy is
independent of the question, whether the Hamiltonian is a constant of
motion. The Hamiltonian can be a conserved quantity without represent-
ing the total energy.

3. The relation (5.102) between the Hamiltonian and the Lagrangian is
known as a Legendre transformation3.

5.3.2.3 Examples concerning conservation laws. The general remarks
on conservation laws within the framework of Lagrangian theory are illus-
trated by a few explicit examples.

The first example is the one dimensional harmonic oscillator with

T =
m

2
ẋ2 U =

k

2
x2 L =

m

2
ẋ2 − k

2
x2 .

The generalised momentum is px = mẋ so that the Hamiltonian (5.102) can
be written as

H = (mẋ)ẋ − m

2
ẋ2 +

k

2
x2 =

m

2
ẋ2 +

k

2
x2 = E .

The generalised momentum is not conserved, the Hamiltonian represents the
conserved total energy.

The problem of motion of a point particle under the influence of a central
force has been addressed in previous chapters (see e.g. Chap. 2.2.1). A more
detailed account is given below. The generalised coordinates r, θ and ϕ are
used for the discussion of this problem with the Lagrangian (see 5.92)

L =
m

2
(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ) − U(r) .

The generalised momenta are (as calculated before (5.93))

pr = mṙ pθ = mr2θ̇ pϕ = mr2ϕ̇ sin2 θ

so that the Hamiltonian takes the form

H = m(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ) − L

=
m

2
(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ) + U(r) = E .

The angle ϕ is a cyclical coordinate (as remarked before)
3 See Chap. 5.4.2 for additional remarks on the concept of Legendre transforma-

tions.
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pϕ = mr2ϕ̇ sin2 θ = const. −→ pϕ(t) = pϕ(0) .

It is possible to choose the coordinate system in such a way, that a point
particle is found on the z - axis at the time t = 0. The initial conditions for
the polar angle θ and the generalised momentum pϕ are

θ(0) = 0 −→ sin θ(0) = 0 −→ pϕ(t) = pϕ(0) = 0

in this case. The generalised momentum can only vanish for times t > 0 , if

• the azimuthal velocity vanishes (ϕ̇ = 0) or
• the mass point does not moves at all (r(t) = 0) or
• the mass point moves only along the z - axis (θ(t) = 0).

The first case leads to the more general situation: the mass point moves in a
plane, which contains the z - axis and the straight line y = x(tanϕ) (Fig. 5.23)
if the azimuthal velocity vanishes. This indicates that the vector of the areal
velocity has a fixed direction. The Lagrangian (5.92) simplifies for this choice

x

z

y

ϕ

Fig. 5.23. Lagrange II: law of areas in the central force
problem

of the coordinate system

L =
m

2
(ṙ2 + r2θ̇2) − U(r)

and it is found that the angle θ is also a cyclical coordinate. The associated
generalised momentum (an angular momentum) is a conserved quantity

pθ ≡ l = mr2θ̇ = const.

This statement demonstrates that the magnitude of the vector of the areal
velocity is also conserved. The law of areas is valid but has to be made
apparent by a suitable choice of the coordinate system.

The Lagrange equation of motion for the remaining radial coordinate

mr̈ − mrθ̇2 +
∂U(r)

∂r
= 0

can, after a replacement of θ̇ by the angular momentum l , be written as

mr̈ − l2

2mr2
+

∂U(r)
∂r

= 0 .

The Lagrange equations of the second kind (Lagrange II)5.3
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This is exactly the equation of motion which has been used in Chap. 4.1 for
the discussion of the ’Kepler problem’. The associated Hamiltonian represents
the total energy and is conserved as

∂U

∂t
= 0 and

∂L

∂t
= 0 .

The Lagrangian for the motion of a point particle on the surface of a
fixed cylinder under the influence of a harmonic restoring force (see p. 221)
depends on the coordinates ϕ and z

L =
m

2
(R2ϕ̇2 + ż2) − k

2
(R2 + z2) = T − U .

It does not depend on ϕ , so that the associated generalised momentum
pϕ = mR2ϕ̇ is conserved. This reflects the fact that the circular motion is
uniform, as long the radius R does not change with time. The Hamiltonian

H = (mR2ϕ̇)ϕ̇ + (mż)ż − L = T + U = E

is conserved and represents the energy. The sufficient conditions are satisfied.
The situation is different, if the surface of the cylinder changes with time.

In the rheonomic situation the Lagrangian takes the form

L =
m

2
(Ṙ(t)2 + R(t)2ϕ̇2 + ż2) − k

2
(R(t)2 + z2) = T − U ,

where R(t) is a given function of time. The coordinates ϕ is still cyclical

pϕ = mR(t)2ϕ̇(t) = const. ,

but the motion along the surface is not uniform, as it is influenced by the
time dependence of R(t). The Hamiltonian is not a conserved quantity. The
partial derivative of the Lagrange function with respect to time does not
vanish

∂L

∂t
= mṘR̈ + (mϕ̇2 − k)RṘ �= 0 ,

due to the time dependent constraint. The (time dependent) Hamiltonian,
calculated according to the definition

H = (mR2ϕ̇)ϕ̇ + (mż)ż − L = T + U − m

2
Ṙ2 ,

is a quantity, which does not correspond to the total energy of the point
particle, which is given by T + U .

The only relevant degree of freedom for the motion of a mass point on
a helix (see p. 223) is the height z . The Lagrangian (compare (5.75)) for a
rising helix is given by

L =
m

2

[
R2

(
2π
h

ż + ω(t)
)2

+ ż2

]
− mgz = T − U
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for the case of an arbitrary rotation. The Hamiltonian can be calculated via
the generalised momentum

pz = m

[
2π
h

R2ω + ż

(
1 +

(
2π
h

R

)2
)]

as

H = pz ż − L =
m

2

[
ż2

(
1 +

(
2π
h

R

)2
)

− R2ω(t)2
]

+ mgz �= T + U .

The Hamiltonian does not represent the total energy, but is a conserved
quantity for a uniform rotation as the condition ∂L/∂t = 0 is satisfied in this
case. The partial derivative of the Lagrangian does not vanish, if the rotation
is not uniform. The Hamiltonian is not a constant of motion in this case.

5.3.3 Lagrange II for a system of mass points

The discussion of the Lagrange equations of the second kind for a system
of point particles does not differ greatly from the considerations for the
case of one point particle. The situation, that is addressed in this case,
can be sketched as follows: the forces which act in the system of N masses
{m1, . . . ,mN} are classified as external F i and internal f ji forces. The ef-
fect of constraining forces has to be considered, if additional (geometrical)
constraints are present. The constraining force acting on the i-th mass is,
without further specification, denoted by Zi . The Newtonian equations of
motion for this system are therefore

mir̈i = Ki + Zi (i = 1, 2, . . . N)

with Ki = F i +
N∑

j=1

f ji (f ii = 0) .

D’Alembert’s principle is formulated, as before, with the aid of a consecutive
numbering of the coordinates, masses and force components from 1 bis 3N .
The principle can then be stated in the form

3N∑
i=1

(miẍi − Ki) δxi = 0 .

The constraining forces are generated by a set of constraints. It will be as-
sumed that the system is subjected to r holonomic (rheonomic or sclero-
nomic) constraints

f1(x1, . . . , x3N , t) = 0 . . . fr(x1, . . . , x3N , t) = 0 .

The steps for the assembly of the Lagrange equations of the second kind
correspond exactly to the steps used in Chap. 5.3.1 for the case of one point
particle:

The Lagrange equations of the second kind (Lagrange II)5.3
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(1) The first step is the choice of a suitable transformation between the Carte-
sian and the generalised coordinates

xi = xi(q1, . . . , q3N , t) (i = 1, 2, . . . 3N)

with the inverse

qμ = qμ(x1, . . . , x3N , t) (μ = 1, 2, . . . 3N) .

The r constraints are incorporated by choosing e.g.

q3N−r+1 = f1(x1, . . . , x3N , t) = 0

...

q3N = fr(x1, . . . , x3N , t) = 0

for the last r generalised coordinates These coordinates are ignorable,
they can be excluded from the discussion.

(2) The kinetic energy

T =
1
2

3N∑
i=1

miẋ
2
i

is expressed in the second step in terms of the remaining generalised
coordinates using the time derivative of the transformation

ẋi =
3N−r∑
μ=1

∂xi

∂qμ
q̇μ +

∂xi

∂t
.

The kinetic energy is now a function of the generalised coordinates, ve-
locities and, if applicable, the time.

(3) With this expression for the kinetic energy the derivatives

∂T

∂qμ
=

3N∑
i=1

miẋi
∂ẋi

∂qμ

and

d
dt

(
∂T

∂q̇μ

)
=

3N∑
i=1

miẍi
∂xi

∂qμ
+

∂T

∂qμ
(μ = 1, 2, . . . 3N − r)

are calculated. The derivation of these relations follows step by step the
calculation for the case of one point particle. The only difference is: the
sum over the indices of the generalised coordinates runs up to (3N − r)
instead of (3 − r).

(4) The relation between the virtual displacements in terms of the two sets
of coordinates are

δxi =
3N−r∑
μ=1

∂xi

∂qμ
δqμ .
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(5) The transformation of d’Alembert’s principle leads to

3N∑
i=1

3N−r∑
μ=1

[
miẍi

∂xi

∂qμ
− Ki

∂xi

∂qμ

]
δqμ = 0 .

(6) Generalised forces are introduced as before with

Qμ =
3N∑
i=1

Ki
∂xi

∂qμ

and

Ki = Fi +
3N∑
j=1

fji .

The consecutive numbering of the components leads to a specific pattern
for the structure of the matrix fji . The pattern arises from the following
properties
• The condition fkk = 0 with (k = 1, . . . , N) is incorporated.
• The decomposition of the interaction fkl between pairs of particles

with (k, l = 1, . . . , N) into components leads to the vanishing of a
number of entries for fji in the matrix pattern.

It is found, as indicated in the diagram of the matrix fji, that non-
vanishing contributions occur only for

1 ≤ j = i ± 3n ≤ 3N (n = 1, 2, . . . , N − 1) .

j \ i 1 2 3 4 5 6 7 . . . 3N-2 3N-1 3N

1 o o o x o o x x o o
2 o o o o x o o . . . o x o
3 o o o o o x o o o x

4 x o o o o o x x o o
5 o x o o o o o . . . o x o
6 o o x o o o o o o x

7 x o o x o o o x o o
...

. . . . . . . . . . . .

(7) D’Alembert’s principle can be recast in the form

3N−r∑
μ=1

{
d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ

}
δqμ = 0

with the use of steps (3) and (6). As all 3N − r generalised coordinates
are independent, the set of equations of motion is, as before

The Lagrange equations of the second kind (Lagrange II)5.3
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d
dt

(
∂T

∂q̇μ

)
− ∂T

∂qμ
− Qμ = 0 (μ = 1, 2, . . . 3N − r) . (5.106)

This set of equations of motion is valid for conservative as well as nonconser-
vative active forces.

The external and the internal forces can be represented in terms of po-
tential energies (U respectively V ) followed by the introduction of a suitable
Lagrangian for a conservative system (conservative internal as well as ex-
ternal forces). With the consecutive numbering of the coordinates the total
potential energy of the system can be written as

U + V = U1(x1, x2, x3) + U2(x4, x5, x6) + . . .

UN (x3N−2, x3N−1, x3N ) + V12(x1x2x3, x4x5x6) +
V13(x1x2x3, x7x8x9) + . . .

+VN−1,N (x3N−5x3N−4x3N−3, x3N−2x3N−1x3N ) .

The coordinates are divided into sets of three for the potential energy
of the external forces U . The individual terms of the potential energy of
the internal forces V depend on all admissible combinations of sets of three
coordinates. The Cartesian components of the forces can be regained with

Ki = − ∂U

∂xi
− ∂V

∂xi
,

the generalised force components are

Qμ = −
3N∑
i=1

∂(U + V )
∂xi

∂xi

∂qμ
= −∂(U + V )

∂qμ
(μ = 1, 2, . . . 3N − r) .

These can be calculated in a different fashion, if the total potential energy is
first expressed in term of the generalised coordinates

U + V = U(q1, . . . q3N−r, t) + V (q1, . . . q3N−r, t)

and the generalised gradients of these functions are evaluated afterwards.
With the definition of the extended Lagrangian

L = T − U − V (5.107)

and the statement, that the total potential energy does not depend on the
generalised velocities, one arrives at the ’standard form’ of the Lagrange
equations of the second kind for a system N point particles withconservative
forces, which is subjected to r holonomic constraints

d
dt

(
∂L

∂q̇μ

)
− ∂L

∂qμ
= 0 (μ = 1, 2, . . . 3N − r) . (5.108)

of
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These equations constitute an optimal starting point for the discussion of
arbitrary (but holonomic and conservative) problems of motion. A selection
of such problems is discussed in Chap. 6.

The unchanged form of the Lagrange equations allows the transcription
of previous statements relating to possible conservation laws.

1. The generalised momentum is a conserved quantity, if the corresponding
coordinate is cyclical

∂L

∂qμ
= 0 ⇒ pμ =

∂L

∂q̇μ
= const.

2. The Hamiltonian of the system is defined by

H =
3N−r∑
μ=1

pμq̇μ − L .

3. The total time derivative of the Hamiltonian equals the negative value of
the partial time derivative of the Lagrangian

dH

dt
= −∂L

∂t
.

Hence follows the statement: H is a conserved quantity if L does not
depend explicitly on time

∂L

∂t
= 0 =⇒ dH

dt
= 0 =⇒ H(t) = H(0) .

4. The Hamiltonian is identical with the total energy of the system

H = T + U + V = E

if the relations
∂(U + V )

∂q̇μ
= 0 as well as

∂xi

∂t
= 0

are valid.

The tools for the discussion of problems of motion in mechanics are as-
sembled with the Lagrange equations of the second kind for systems of point
particles. An alternative foundation of mechanics is due to W. Hamilton.
Hamilton’s formulation does open new avenues for the discussion of prob-
lems of motion (e.g. under the heading ’canonical transformations’). Its real
significance lies, however, to a lesser degree in the application to specific
problems of mechanics but rather in the possibility to transfer basic concepts
from mechanics into more advanced theories. Hamilton’s equation of motion
(in a modified form) constitute a pragmatic access to statistical mechanics
(and hence thermodynamics) and to quantum mechanics.

The Lagrange equations of the second kind (Lagrange II)5.3
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5.4 Hamilton’s formulation of mechanics

The Lagrange equations of motion can also be derived from Hamilton’s prin-
ciple, which will be detailed in this chapter. This principle can be regarded
as an alternative possibility for an axiomatic foundation of mechanics. The
foundation of mechanics can therefore be approached from two different per-
spectives. While d’Alembert’s principle is a principle based on differentials,
Hamilton’s principle is based on integrals. The differential principle is more
flexible. For systems (e.g. conservative, holonomic), for which a Lagrangian
can be defined, the two principles are equivalent. The variational calculus on
which Hamilton’s principle is based, can, on the other hand, be applied more
easily in areas of physics beyond mechanics.

After a brief look at the motivation from the point of view of physics, the
variational calculus will be introduced and illustrated with a few examples.
The variational calculus allows a detailed discussion of Hamilton’s principle.
Hamilton’s equations of motion are presented in the second part of this chap-
ter. The central point for the discussion of these equations of motion is the
Hamiltonian, which has to be regarded as a function of the generalised coor-
dinates and generalised momenta in the present context. The chapter closes
with an introduction to phase space concepts and their relevance for chaotic
motion.

5.4.1 Hamilton’s principle

The formulation of this principle in the context of mechanics is:

Consider the motion of point particles in a (conservative)
system between the times t1 and t2. The motion proceeds
in such a fashion that the integral

I =
∫ t2

t1

L(q1(t) . . . qn(t), q̇1(t) . . . q̇n(t), t) dt

has an extremal value for the ’actual path’.

(5.109)

The concept of a ’path’ has to be interpreted as follows: the n generalised co-
ordinates of the system span an n -dimensional space. The n -tuple of points
in this space {q1(t0) . . . qn(t0)} describes the instantaneous configuration of
the system. This space is referred to as the configuration space. A curve in
configuration space with the parametric representation {q1(t) . . . qn(t)} with
t1 ≤ t ≤ t2 is a ’path’. The statement made with Hamilton’s principle is
therefore: of all the possible curves, which can connect a given initial con-
figuration with a given final configuration, exactly one is distinguished. It is
the curve, for which the integral above is extremal (minimal or maximal).
This curve describes the actual time development of the system. In order to
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find the curve describing the ’actual path’, it can be imagined that suitable
neighbouring curves are tested until the one with the extremum is found.
The mathematical formulation of this ’trial’ is the content of the variational
calculus, which will be introduced with a simple example.

5.4.1.1 The Euler-Lagrange variational equations. Given is a function
f(t, x, ẋ) of three (!) variables t, x, ẋ . The variable t is the independent
variable, x(t) the dependent variable and ẋ the derivative of x with respect
to t . The functional relationship between x and t is not known. Rather the
question is: determine x(t) by demanding

1. The curve x(t) should pass through two specified points (t1, x1) and
(t2, x2) in the x - t plane.

2. The definite integral

I =
∫ t2

t1

f(t, x, ẋ) dt

should be extremal.

A mathematical relation, which associates a number with a function, is
termed a functional. I is a functional of x in the sense of this definition

t, x(t) −→ relation :
∫

f(t, x, ẋ) dt −→ I = I[x] .

Roughly speaking, a functional is a function of a function, where (in the
present example) each function x(t) is associated with a number I. An integral
over a function is only one example for a functional. The relations, which
define functionals, can be more complicated.

The solution of the problem posed can be approached with the following
argumentation: under the assumption, that x(t) is the correct function, arbi-
trary variations about this curve can be considered. These variations can be
expressed in the form

xv(t) = x(t) + ε ϕ(t) .

The function ϕ(t) can be chosen freely with the exception of one restriction.
It should be continuous and, in order to satisfy requirement (1), it should
vanish for t1 and t2

ϕ(t1) = ϕ(t2) = 0 .

The parameter ε is a constant, which would be arbitrarily small, if the trial
function and the true function coincide. The ansatz can be differentiated

ẋv(t) = ẋ(t) + ε ϕ̇(t)

and inserted into the functional∫ t2

t1

f(t, xv, ẋv)dt = I([xv, ϕ], ε) ≡ I(ε) .
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The quantity I is a functional of xv and ϕ , but a function of ε . The notation
I([xv, ϕ], ε) emphasises this point. A closer look at the function I(ε) shows,
that it has to have an extremum for ε = 0 , if xv(t) is identical with the
desired solution x(t) . The condition to be used for the determination of x(t)
is therefore

dI(ε)
dε

∣∣∣∣
ε=0

= 0 .

In order to apply this condition, the integrand is expanded in a Taylor series
about ε = 0

f(t, xv, ẋv) = f(t, x, ẋ) + ε

{
∂f

∂xv

∂xv

∂ε
+

∂f

∂ẋv

∂ẋv

∂ε

}
ε=0

+
ε2

2!
{. . .}ε=0 + . . .

and this expansion is inserted into the integral

I(ε) =
∫ t2

t1

f(t, x, ẋ)dt + ε

∫ t2

t1

{
∂f

∂x
ϕ +

∂f

∂ẋ
ϕ̇

}
dt

+
ε2

2!

∫ t2

t1

{. . .}dt + . . . .

Differentiation gives

dI(ε)
dε

∣∣∣∣
ε=0

=
∫ t2

t1

{
∂f

∂x
ϕ +

∂f

∂ẋ
ϕ̇

}
dt

!= 0 .

Partial integration of the second term in the brackets yields∫ t2

t1

∂f

∂ẋ
ϕ̇dt =

∂f

∂ẋ
ϕ

∣∣∣∣
t2

t1

−
∫ t2

t1

[
d
dt

(
∂f

∂ẋ

)]
ϕdt .

The first term on the right hand side vanishes because of the condition
ϕ(t1) = ϕ(t2) = 0 . Hence there remains∫ t2

t1

dt

{
∂f

∂x
− d

dt

(
∂f

∂ẋ

)}
ϕ(t) = 0 . (5.110)

The variational function can, with the exception that it should be continuous
and have the value zero for t1 and t2 , be chosen freely. The condition (5.110)
can only be satisfied if the expression within the brackets vanishes

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0 . (5.111)

The result is a differential equation, which has exactly the structure of the
Lagrange equation of the second kind. The name of the more general equation
(5.111) is Euler-Lagrange variational equation.
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5.4.1.2 Examples from the variational calculus. One of the many op-
tions for the application of the variational calculus is the solution of geomet-
rical problems. Some of the classical examples of this type of problem are
quite remarkable.
Specify two points in the x - t plane. The task is: determine the equation
of the (section of the) curve, which yields the shortest connection of the
two points (Fig. 5.24). The answer is actually well known. The variational

2P

1P

2t1t t

x

Fig. 5.24. Illustration of the simple variational prob-
lem

approach indicated above can be applied in order to verify its correctness.
The ansatz looks as follows: the length of arc for an arbitrary curve through
the two points P1 and P2 can be expressed as

S[x] =
∫ t2

t1

[
dx2 + dt2

]1/2
=
∫ t2

t1

[
1 + ẋ2

]1/2
dt .

The function f to be discussed is therefore

f =
[
1 + ẋ2

]1/2
.

For setting up the variational equation, which determines the extremum of
the functional S[x] , the derivatives

∂f

∂x
= 0 and

∂f

∂ẋ
=

ẋ

[1 + ẋ2]1/2

are needed. The Euler-Lagrange equation to be solved is

d
dt

[
ẋ

[1 + ẋ2]1/2

]
= 0 .

A first integration gives

ẋ = C1

[
1 + ẋ2

]1/2
,

which can be resolved with respect to ẋ

ẋ = ±
[

C2
1

1 − C2
1

]1/2

= C2 .

5.4 Hamilton’s formulation of mechanics
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A second integration yields the expected result, a section of a straight line

x(t) = C3 + C2t .

The two constants are determined by the conditions x(t1) = x1 and x(t2) = x2 .

The next problem is known under the name ’problem of the brachys-
tochrone’ (problem of the shortest time). It is one of the first variational
problems, that has been discussed in the literature (J. Bernoulli, 1696): Two
points in the x - y plane are connected via a fictitious wire. The question is:
which form of the wire is required so that a mass point moving under the
influence of gravity takes the shortest possible time to get from point P1 to
point P2 (Fig. 5.25) if it starts from rest?

2P

1P

ds

x

y

Fig. 5.25. Problem of the brachystochrone

The time required for the motion along an infinitesimal section ds of the
curve is

dt =
ds

v(t)
,

if the motion is characterised by the velocity v(t) . The time to traverse the
complete curve between the points P1 and P2 is therefore

T =
∫ 2

1

ds

v(t)
.

This integral should be made extremal by the choice of a suitable function
y(x) . The infinitesimal arc length ds has to be expressed in terms of its
Cartesian components for this purpose

ds =
[
dx2 + dy2

]1/2

and a relation between the instantaneous velocity and the coordinate has to
be specified. This relation follows from energy conservation (using v1 = 0)

m

2
v2 + mgy = E1(= mgy1)

in the form
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v(t) =
[
2E1

m
− 2gy

]1/2

= [C0 − 2gy]1/2
.

The ansatz for the calculation of the total time for the motion between the
two points is therefore

T =
∫ 2

1

[
dx2 + dy2

]1/2

[C0 − 2gy]1/2
.

At this point it has not yet been decided, which of the variables is the de-
pendent or the independent one. The variational equations are simpler, if y
is chosen as the independent and x as the dependent variable. This choice
leads to

T =
∫ y2

y1

[
1 + x′2

]1/2

[C0 − 2gy]1/2
dy x′ =

dx

dy
.

Application of the variational calculus with the function f

f(y, x, x′) =

[
1 + x′2

C0 − 2gy

]1/2

requires the derivatives

∂f

∂x
= 0

∂f

∂x′ =
x′

[(1 + x′2)(C0 − 2gy)]1/2
.

A first integration of the Euler-Lagrange variational equation

d
dy

(
∂f

∂x′

)
= 0

gives the result

x′

[(1 + x′2)(C0 − 2gy)]1/2
= C1 .

This equation has to be resolved with respect to x′

x′ = ±
[
A − y

B + y

]1/2

with A =
C0

2g
B =

1 − C2
1C0

2C2
1g

.

The solution of this linear differential equation for the function x(y) can be
obtained by a direct integration

x2 − x1 = ±
∫ y2

y1

[
A − y

B + y

]1/2

dy .

The integral can be evaluated with the substitution

y = A − R(1 − cosα) R =
1
2
(A + B) (5.112)

5.4 Hamilton’s formulation of mechanics
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with

dy = −R sinα dα B + y = R(1 + cosα) =
R sin2 α

1 − cosα
.

The resulting integral

x = ±R

∫
(1 − cosα)dα

is elementary so that the x -coordinate is found to be (before insertion of
appropriate upper and lower limits)

x = x0 ± R(α − sinα) . (5.113)

The expressions y = y(α) and x = x(α) are the parametric representation
of a cycloid4 (Fig. 5.26). The trajectory, for which the time for the motion

Fig. 5.26. A cycloid

between the two points is extremal (minimal), is a cycloid, or rather a section
of a cycloid.

5.4.1.3 A short derivation of the variational equations. The central
statement of the variational calculus for the case of one function x(t) is:

The functional
I[x] =

∫ t2
t1

f(t, x, ẋ)dt

has an extremum, if the function x(t) is determined via
the variational equation

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0 .

(5.114)

This statement is often derived in an abbreviated fashion. The variation of

I =
∫ t2

t1

f(t, x, ẋ)dt

is specified in the form

δI = δ

[∫ t2

t1

f(t, x, ẋ)dt

]
=
∫ t2

t1

δf(t, x, ẋ)dt .

The variational symbol δ can be taken under the integral sign, as the limits
are not affected by the variation. One may abbreviate the derivation of the
variational equations with the following rules:
4 The cycloid is a curve which is obtained if a wheel (radius R) is rolling along a

straight line and the trajectory of a point on the rim of the wheel is traced. The
parametric representation is also discussed in Probl. 4.13.
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(a) The rule δf =
∂f

∂x
δx +

∂f

∂ẋ
δẋ corresponds to the chain rule

∂f

∂ε
=

∂f

∂x

∂x

∂ε
+

∂f

∂ẋ

∂ẋ

∂ε
.

(b) Variation and differentiation with respect to time can be interchanged

δẋ =
d
dt

(δx)

as one has

δẋ =
∂

∂ε

(
dx

dt

)
dε =

[
d
dt

(
∂x

∂ε

)]
dε =

d
dt

[(
∂x

∂ε

)
dε

]
=

d
dt

(δx) .

Variation using the two rules gives

δI =
∫ t2

t1

(
∂f

∂x
δx +

∂f

∂ẋ

d
dt

(δx)
)

dt = 0 .

Partial integration of the second term with δx = 0 at the integration limits
yields

δI =
∫ t2

t1

[(
∂f

∂x
− d

dt

(
∂f

∂ẋ

))
δx

]
dt = 0 .

The symbolic manipulation indicated can be extended to cover all aspects of
the variational calculus. Nonetheless, the precise mathematical formulation
should be employed if in doubt.

The Lagrange equation of the second kind for the case of one degree of
freedom follows directly from Hamilton’s principle. It is only necessary to
replace the function f by the Lagrangian L and the coordinate x by the gen-
eralised coordinate q in (5.114). The extension to the case of several degrees
of freedom is the next topic.

5.4.1.4 Formulation of Hamilton’s principle. The extension of the dis-
cussion to the case of several degrees of freedom, q1 . . . qn , is based on a
functional of n functions

I[q1 . . . qn] =
∫ t2

t1

L(t, q1 . . . qn, q̇1 . . . q̇n)dt . (5.115)

The variation of each of the functions qμ uses the ansatz

qμ, v(t) = qμ(t) + εϕμ(t) (μ = 1, 2, . . . n)

with

ϕμ(t1) = ϕμ(t2) = 0 .

Expansion of L in a Taylor series around ε = 0

L(t, q1, v . . . qn, v, q̇1, v . . . q̇n, v) = L(t, q1 . . . qn, q̇1 . . . q̇n)

5.4 Hamilton’s formulation of mechanics
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+ε

{[
∂L

∂q1
ϕ1 +

∂L

∂q̇1
ϕ̇1

]
+ . . . +

[
∂L

∂qn
ϕn +

∂L

∂q̇n
ϕ̇n

]}
+ . . .

leads to the condition for an extremum of the functional

dI(ε)
dε

∣∣∣∣
ε=0

=
∫ t2

t1

n∑
μ=1

{
∂L

∂qμ
ϕμ +

∂L

∂q̇μ
ϕ̇μ

}
dt = 0 .

Partial integration of the second term in each of the contributions to the sum
using ϕμ(t1) = ϕμ(t2) = 0 yields

dI(ε)
dε

∣∣∣∣
ε=0

=
∫ t2

t1

[
n∑

μ=1

{
∂L

∂qμ
− d

dt

(
∂L

∂q̇μ

)}
ϕμ

]
dt = 0 . (5.116)

As all the functions ϕμ can be chosen freely the variational equations

∂L

∂qμ
− d

dt

(
∂L

∂q̇μ

)
= 0 (μ = 1, 2, . . . n)

are found. This shows that the Lagrange equations follow from Hamilton’s
principle (if a Lagrange function of the system can be defined). The quan-
tity [Lagrangian times time] has the dimension of an action. For this reason
Hamilton’s principle is often referred to as the action principle or (as the
extremum corresponds in mechanics in most cases to a minimum) the prin-
ciple of least action.

The Lagrangian, a function of the generalised coordinates, the generalised
velocities and time, is the central quantity for the Lagrange form of the
equations of motion. It is the Hamiltonian, which plays the main role in
Hamilton’s form of the equations of motion, which will now be discussed in
detail. The Hamiltonian represents, under the conditions stated before (see
p. 236), the total energy of the system. This fact emphasises the central role
of this quantity in nearly all areas of physics.

5.4.2 Hamilton’s equation of motion

The Hamiltonian is connected to the Lagrangian

L = L(q1(t) . . . qn(t), q̇1(t) . . . q̇n(t), t)

by a Legendre transformation

H =
∑

μ

pμq̇μ − L .

A set of equations of motion, which is based on the Hamiltonian, can be
gained with the following argument. Consider the first differential of the
Hamiltonian, which follows from the definition
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dH =
∑

μ

pμdq̇μ +
∑

μ

q̇μdpμ −
∑

μ

∂L

∂qμ
dqμ −

∑
μ

∂L

∂q̇μ
dq̇μ − ∂L

∂t
dt

=
∑

μ

q̇μdpμ −
∑

μ

∂L

∂qμ
dqμ − ∂L

∂t
dt .

The first and the fourth terms cancel due to the definition of the generalised
momentum

pμ =
∂L

∂q̇μ
.

Use in addition the Lagrange equation in the form

ṗμ =
∂L

∂qμ

and find

dH =
∑

μ

q̇μdpμ −
∑

μ

ṗμdqμ − ∂L

∂t
dt . (5.117)

This form of the total differential shows explicitly that H is a function of the
generalised coordinates, the generalised momenta and (possibly) the time

H = H(q1(t) . . . qn(t), p1(t) . . . pn(t), t) .

The Legendre transformation allows a transition from a function of the
generalised coordinates and velocities (L) to a function of the generalised
coordinates and momenta (H). Using this property of the Hamiltonian
H = H(q, p, t) , a variant of the total differential can be written down

dH =
∑

μ

∂H

∂qμ
dqμ +

∑ ∂H

∂pμ
dpμ +

∂H

∂t
dt . (5.118)

The differentials of the basic variables are independent of each other. There-
fore a comparison of the statements (5.116) and (5.118) yields the set of
equations of motion

ṗμ = −∂H

∂qμ
q̇μ =

∂H

∂pμ

∂H

∂t
= −∂L

∂t
(μ = 1, 2, . . . n) . (5.119)

These differential equations are Hamilton’s equations of motion.
A well used example is the simple, linear harmonic oscillator. The Hamil-

tonian

H =
p2

2m
+

k

2
x2

leads to the equations of motion

ṗ = −∂H

∂x
= −kx ẋ = −∂H

∂p
=

p

m

∂H

∂t
= 0 . (5.120)

5.4 Hamilton’s formulation of mechanics
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These are two differential equations of first order for the two functions x(t)
and p(t) . The practical way to the solution is, however, obtained by differ-
entiating the second equation with respect to time

ẍ =
1
m

ṗ

and replacing ṗ with the first equation. The result is

ẍ = − k

m
x = −ω2x

that is the Lagrangian (or Newtonian) equation of motion.
The statement, that is indicated by this example, is valid in general: The

Lagrange equations and the Hamilton equations are completely equivalent.
Hamilton’s equations can, as Lagrange equations, also be derived directly
from Hamilton’s principle. The formal difference between the two sets of
equations is: the Lagrange equations of motion represent a set of n differential
equations of second order for the generalised coordinates qμ(t) . The Hamilton
equations of motion represent a set of 2n differential equations of first order
for the generalised coordinates qμ and the generalised momenta pμ . The
equivalence of the two sets of equations of motion follows from a general
theorem of the theory of differential equations, which says: a system of n
differential equations of second order for n functions can always be recast as
a system of 2n differential equations for 2n functions of first order (see
Math.Chap. 6.1).

The impression, that not much has been gained by the introduction of
a second set of equations, is not correct. Hamilton’s equations do open new
possibilities:

• As H corresponds in most cases to the energy (and as energy is a central
concept of physics) the new equations constitute an appropriate starting
point for the extension of mechanics (e.g. to quantum mechanics).

• There exist independent methods for the solution of Hamilton’s equations,
which are based on the concept of canonical transformations.

Before a discussion of this method two new concepts, which play a special
role in Hamiltonian mechanics, have to be introduced.

5.4.2.1 The phase space. The time development of a system is described
in terms of the 2n -tuple

{q1(t) . . . qn(t), p1(t) . . . pn(t)}
in the Hamiltonian formulation. This suggests the introduction of a 2n -
dimensional space, which is spanned by the (generalised) coordinates and
momenta. This space is the phase space. Every point in phase space cha-
racterises a possible instantaneous state of the system. The time develop-
ment of the system is represented by a curve (a one dimensional manifold)
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in this (2n - dimensional) space. Such curves are called phase space tra-
jectories. Hamilton’s equations of motion with initial conditions determine
unique phase trajectories5. The phase trajectories of the harmonic oscillator
are ellipses, which are specified by the Hamiltonian

H =
p2

2m
+

k

2
q2 = E0 .

The energy value determines the size of the ellipses, the quantity (k m) the
eccentricity. For a given energy all possible states of the system are described
by one of the ellipses. The fact, that the phase space trajectories of this
example are closed, expresses the oscillatory character of the motion.

5.4.2.2 The Poisson brackets. The Poisson brackets are an aid, with
which the time change of physical quantities can be expressed in a com-
pact fashion. They provide, at a later stage (see Vol. 3), an important link
between classical and quantum mechanics. The Poisson brackets for two arbi-
trary quantities, which depend on the generalised coordinates, the generalised
momenta and the time

u = u(q1 . . . qn p1 . . . pn t)
v = v(q1 . . . qn p1 . . . pn t) ,

are defined as

{u, v} =
n∑

μ=1

(
∂u

∂qμ

∂v

∂pμ
− ∂u

∂pμ

∂v

∂qμ

)
. (5.121)

A number of rules for the use of these brackets can be established. The
definition (5.121) shows directly, that the brackets are antisymmetric with
respect to the change of the sequence of the two quantities

{u, v} = −{v, u} .

In addition, the brackets satisfy the Jacobi identity

{u {v, w}} + {v {w, u}} + {w {u, v}} = 0 . (5.122)

This relation can be proven (be it in a slightly tedious fashion) by insertion
of the definition. Direct evaluation also provides the proof of the product rule

{vw, u} = w {v, u} + v {w, u} . (5.123)

Of particular interest are the fundamental Poisson brackets

{qμ, pν} = δμν {qμ, qν} = {pμ, pν} = 0 (μ , ν = 1, . . . n) , (5.124)

as they constitute one of the links between mechanics and quantum mechan-
ics.

The total change of a quantity u(q, p, t) in time is calculated with the
chain rule as
5 Additional remarks on the phase space can be found in Chap. 5.4.3.

5.4 Hamilton’s formulation of mechanics
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du

dt
=

∂u

∂t
+
∑

μ

(
∂u

∂qμ

dqμ

dt
+

∂u

∂pμ

dpμ

dt

)
.

Use of the Hamilton equations

q̇μ =
∂H

∂pμ
ṗμ = −∂H

∂qμ

for the elimination of the time derivatives of the generalised coordinates and
momenta gives

du

dt
=

∂u

∂t
+
∑

μ

(
∂u

∂qμ

dH

dpμ
− ∂u

∂pμ

dH

dqμ

)
.

The standard abbreviation of this equation is

du

dt
=

∂u

∂t
+ {u, H} . (5.125)

Equation (5.125), which characterises the time development of a function
u(q, p, t) , can be used in many ways, as for instance:

• The time development of the system is governed by the Poisson bracket
alone, if the function u does not depend explicitly on time

∂u

∂t
= 0 −→ du

dt
= {u, H} .

The function is a constant of motion, if the Poisson bracket with the Hamil-
tonian vanishes in addition

{u, H} = 0 and
∂u

∂t
= 0 −→ du

dt
= 0 .

• On the other hand, the total derivative and the partial derivative with
respect to time will be equal, if the partial derivative does not vanish, but
the bracket vanishes

{u, H} = 0 −→ du

dt
=

∂u

∂t
.

• A symmetric form of Hamilton’s equation of motion (5.119) is obtained for
u = qμ or u = pμ

q̇μ = {qμ, H} ṗμ = {pμ, H} . (5.126)

Additional Poisson brackets, which are of use in practical applications, are

{u, qμ} =
n∑

ν=1

(
∂u

∂qν

∂qμ

∂pν
− ∂u

∂pν

∂qμ

∂qν

)
= − ∂u

∂pμ

and correspondingly

{u, pμ} =
∂u

∂qμ
.

These relations can also be used to obtain the fundamental Poisson brackets
(5.124).
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5.4.2.3 Concerning canonical transformations. There exists an inde-
pendent method for the solution of Hamilton’s equations of motion. This
method will, however, only be sketched for the simple situation involving
only one degree of freedom. The relevant equations are

H = H(q, p, t) ṗ = −∂H

∂q
q̇ =

∂H

∂p
.

The basic idea is to find a transformation of the phase space coordinates

{q, p} −→ {Q, P}
so that as many of the transformed coordinates as possible are cyclical. The
transformation to be considered in the case of one generalised coordinate is

q = f(Q,P ) p = g(Q,P ) . (5.127)

This transformation is not the most general, as an additional time depen-
dence could be included. However, this form is sufficient for the illustration
intended. From the general class of transformations in phase space those are
of primary interest, which maintain the form of the equations of motion. This
means: after insertion of the transformation into the Hamiltonian

H(q, p, t) = H(f(Q,P ), g(Q,P ), t)

≡ K(Q,P, t)

the new phase space variables Q and P are expected to satisfy the equations
of motion

Ṗ = −∂K

∂Q
Q̇ =

∂K

∂P
. (5.128)

Transformations in phase space, which guarantee the form invariance of the
equations of motion, are called canonical transformations. The question,
which has to be answered first, is: how can it be verified, whether a given
transformation is canonical? The question can be answered as follows: dif-
ferentiate the transformation (5.127) with respect to time using the chain
rule

q̇ =
∂f

∂Q
Q̇ +

∂f

∂P
Ṗ ṗ =

∂g

∂Q
Q̇ +

∂g

∂P
Ṗ .

This system of equations can be resolved with respect to Q̇ , respectively with
respect to Ṗ . The result is

∂g

∂P
q̇ − ∂f

∂P
ṗ =

(
∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q

)
Q̇ (5.129)

∂g

∂Q
q̇ − ∂f

∂Q
ṗ = −

(
∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q

)
Ṗ . (5.130)

One then considers

5.4 Hamilton’s formulation of mechanics
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∂K

∂P
=

∂H

∂q

∂f

∂P
+

∂H

∂p

∂g

∂P

and inserts the equation of motion in the original coordinates

∂K

∂P
=

∂g

∂P
q̇ − ∂f

∂P
ṗ

=
(

∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q

)
Q̇ .

The second line follows from equation (5.129). The corresponding relation for
the derivative with respect to the coordinate can be calculated in the same
fashion

∂K

∂Q
=

∂H

∂q

∂f

∂Q
+

∂H

∂p

∂g

∂Q
=

∂g

∂Q
q̇ − ∂f

∂Q
ṗ

= −
(

∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q

)
Ṗ .

The conclusion to be extracted from these calculations is: form invariance of
the equations of motion is guaranteed if the relation(

∂f

∂Q

∂g

∂P
− ∂f

∂P

∂g

∂Q

)
= 1 (5.131)

is satisfied. The expression on the left hand side is reminiscent of the Poisson
bracket. It is abbreviated in the form

{q, p}Q, P =
∂q

∂Q

∂p

∂P
− ∂q

∂P

∂p

∂Q
(5.132)

and referred to as a Lagrange bracket. A canonical transformation can
therefore be recognised by the fact that the Lagrange bracket has the value 1.

The next question to be answered is: what is the use of the canonical
transformations? An answer to this question is obtained with the following
argument: assume that a transformation can be found so that the transformed
Hamiltonian does not depend on the coordinate Q

K = K(P, t) .

The consequence is

Ṗ = −∂K

∂Q
= 0 −→ P = const.

Q̇ =
∂K

∂P
= G(P, t) = G(C, t) −→ Q(t) =

∫ t

G(C, t′)dt′ .

The variable Q is cyclical, the integration of the equation of motion is now
relatively simple.

The harmonic oscillator with
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H =
p2

2m
+

k

2
x2

can serve once more to illustrate the point. The transformation

x =
[

2P
mω

]1/2

sinQ ω =

√
k

m

p = [2mωP ]1/2 cosQ

is canonical, as one finds

∂x

∂Q

∂p

∂P
− ∂x

∂P

∂p

∂Q
= cos2 Q + sin2 Q = 1 .

The transformed Hamiltonian is

K =
1

2m
(2mωP ) cos2 Q +

k

2

(
2P
mω

)
sin2 Q = ωP

so that the corresponding equations of motion

Ṗ = 0 P = const. =
E0

ω

Q̇ =
∂K

∂P
= ω Q = ωt + δ

are simple. The well established solutions in Cartesian coordinates with the
constants of integration E0 and δ are regained simply

x(t) =
[

2E0

mω2

]1/2

sin(ωt + δ)

p(t) = [2mE0]
1/2 cos(ωt + δ) .

The transfer of these arguments to the case of an n -dimensional configura-
tion space can be carried out directly, if the quantities q and p are interpreted
as vectors in an n -dimensional space and corresponding sums are used in the
application of the chain rule.

An answer to the question: ”Do there exist methods, which allow the
determination of canonical transformations which lead to a cyclical structure
of the transformed Hamiltonian?” is, to a certain degree, provided by the
theory of Hamilton-Jacobi6. This theory offers, independent insight into the
structure of mechanical problems. It does, however, not offer any advantages
over the Lagrangian formulation from a practical point of view. For this
reason the formal aspects of theoretical mechanics are concluded with these
remarks.
6 Appropriate chapters of two text books are quoted in the list of references under

[6].

5.4 Hamilton’s formulation of mechanics



262 5 General Formulation of the Mechanics of Point Particles

5.4.3 A cursory look into phase space

The study of phase space trajectories is the basis for the analysis of integrable
as well as chaotic forms of motion. Chaotic motion is distinguished by the
fact, that long term predictions of the motion can, for all practical purposes,
not be obtained with sufficient accuracy. This uncertainty is due to an ex-
treme sensitivity of the system to the initial conditions. This sensitivity is
the reason that the solutions of the equations of motion differ exponentially
for infinitesimally close initial conditions on a sufficiently large time scale.
One consequence is, for instance, observed for the rotational motion of one of
the moons of Saturn. The moon Hyperion executes a chaotic tumbling mo-
tion. Knowledge of the initial orientation with an accuracy of 10 digits is not
enough to predict the orientation after a few years with sufficient accuracy.

5.4.3.1 Basic concepts. A complete discussion of the dynamics of nonlin-
ear systems is not possible in the present context. The discussion has to be
restricted to the principal features and some of the basic concepts for the
simplest situation, that is one-dimensional motion. The equation

p = m q̇ = ± [2m(E0 − U(q))]1/2 (5.133)

defines a phase space trajectory for each value of the initial energy E0, if
the one dimensional system is characterised by the Hamiltonian

H =
p2

2m
+ U(q) = E0 .

The totality of phase space trajectories is named a phase space portrait
of the system.

The phase space portrait of the harmonic oscillator, a family of concen-
tric ellipses, constitutes an example, for which every phase space trajectory
is restricted to a finite section of phase space. The phase space of the mathe-
matical pendulum (see Chap. 4.2.1), an example of a nonlinear system, shows
definitely more structure. The phase space portrait of this system7 is indi-
cated in Fig. 5.27a for different values of the total energy. The structure of
the phase space trajectories of the mathematical pendulum depends on the
initial conditions. They are restricted to an interval −π < q < π for a proper
oscillation of the pendulum or they cover the complete range of the variable
−π ≤ q ≤ π for a looping motion. A motion with looping can be represented
in a more realistic fashion, if the phase space portrait is continued period-
ically (Fig. 5.27b) or if the trajectories are spread out on the surface of a
cylinder which is connected at the points q = ±π .

A more qualitative discussion of the situation in the phase space charac-
terized by the differential equation (5.133) can be based on singular points
and the separatrix (Fig. 5.27), This curve separates the phase space sector
7 Plotted is the angular velocity q̇ ≡ ϕ̇ in units of s−1 for a given set of parameters

versus the angle q ≡ ϕ instead of p versus q.
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(a) (b)
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Fig. 5.27. Phase space portrait of the mathematical pendulum

of the ’open’ trajectories from that of the ’closed’ ones. It runs through spe-
cific equilibrium points. Equilibrium points are in general characterised by
the properties

q̇ν =
pν

mν
= 0 ṗν =

∂U(. . .)
∂qν

= 0

or specifically for the case of one degree of freedom

peq = 0
dU(q)

dq

∣∣∣
eq

= 0 .

The velocity has the value zero and the potential energy has an extremum.
These conditions can be implimented by expanding both sides of the equation
for the phase space trajectory (5.133) in the vicinity of an equilibrium point

p − peq + . . . = ±(2m)1/2[E0 − H(qeq, peq)

− 1
2
U ′′(qeq, peq)(q − qeq)2 + . . .]1/2 .

A consistent reorganisation to second order gives an equation

(p − peq)2 + mU ′′(qeq, peq)(q − qeq)2 = 2m(E0 − H(qeq, peq)) (5.134)

which describes straight lines, ellipses and hyperbolae. The following possi-
bilities in relation to the parameters involved can be recognized:

• This relation reduces to

(p − peq) = ±
√

mU ′′(qeq, peq) (q − qeq) ,

if the Hamiltonian and the initial energy coincide at the equilibrium point

H(qeq, peq) = E0

and if the potential energy is maximal

U ′′(qeq, peq) < 0 .

The two intersecting straight lines are part of the separatrix (Fig. 5.28a).

5.4 Hamilton’s formulation of mechanics
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• One obtains hyperbolae (Fig. 5.28a) if the second derivative of the potential
energy is smaller than zero

U ′′(qeq, peq) < 0

and if the two energy values do not coincide

H(qeq, peq) �= E0 .

This equilibrium point is termed a hyperbolic singularity. The motion
in the vicinity of the maximum of the potential is (obviously) unstable.

• An equilibrium point with

U ′′(qeq, peq) > 0

is called an elliptic singularity (Fig. 5.28b). The motion in the vicinity
of such equilibrium points is stable.

(a) (b)
3

1.5

0

–1.5

–3

p

q
− π/2− π− 3π/2

hyperbolic singularity
(mathematical pendulum)

30–3

4

2

0

–2

–4

p

q

elliptic singularity
(harmonic oscillator)

Fig. 5.28. Phase space portraits

The singular points and the separatrix of the mathematical pendulum can
be calculated directly. The Hamiltonian (see (4.38))

H =
m

2
l2q̇2 − mgl cos q = E0

yields the equilibrium points

peq = ml2q̇eq = 0 sin qeq = 0 −→ qeq = kπ (k = 0,±1,±2, . . .) .

These points have the following properties:

• The second derivative of the potential energy is U ′′(q) = +mgl cos q . This
shows that elliptic singularities occur for even values of k and hyperbolic
singularities for odd values.
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• The separatrix includes the points (q, q̇) = (±π, 0) , the corresponding en-
ergy is H(qeq, peq) = E0 = mgl . The separatrix is therefore, on the basis
of (5.133), characterised by the differential equation

q̇ = ±
√

g

l
[2(1 + cos q)]1/2 = ±2ω cos

(q

2

)
. (5.135)

The phase space trajectories are closed curves for E0 < mgl. These curves
represent the periodic solutions which have been discussed in Chap. 4.2.1.
The pendulum rotates about the suspension point for values of the initial
energy, which are larger than mgl .

The motion along the separatrix corresponds to the following sets of initial
conditions

- The initial condition q(0) = 0, q̇(0) = 2ω leads to a motion from the lowest
to the highest point.

- The motion begins at the highest point and returns to the highest point
for the initial condition q(0) = ±π, q̇ = 0 .

An explicit equation for the motion on the separatrix can be obtained by inte-
gration of the differential equation (5.135),which can be solved by separation
of variables with the result

±ωt = ln
(

tan
(

q′

4
+

π

4

)) ∣∣∣∣
q

q(0)

.

Resolution with respect to the angular coordinate gives for instance for the
example with the initial condition q(0) = 0, q̇(0) = 2ω

q(t) = +4 arctan
(
eωt

)− π .

This result demonstrates that the pendulum needs an infinite amount of time
in order to move from a position with q = 0 to the highest point q = π , as the
values of the arcustangent are arctan 0 = 0 and arctan∞ = π/2. The angular
velocity of the motion on the separatrix is obtained by differentiation of the
equation for q(t)

q̇ =
2ω

coshωt
.

The angular velocity approaches, in accord with the time development of the
coordinate, the limiting value zero.

The phase space portrait of the damped oscillator, a dissipative system
(see Chap. 4.2.2), can be discussed directly by considering the solutions of
the differential equation

mq̈ + bq̇ + kq = 0 .

For weak damping the phase space trajectories are spirals (Fig. 5.29a) which
approach the equilibrium point (q, p) = (0, 0) asymptotically. A phase space

5.4 Hamilton’s formulation of mechanics
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(a) (b)

–1

0

1

ω                    

0 1 2

θ

weak damping strong damping

Fig. 5.29. Phase space portrait of the damped oscillator

portrait with spirals, which do not cross,8 is called a focus, the equilibrium
point is a point attractor. A point attractor ’attracts’ all trajectories in
the surrounding phase space (the so called attractor basin). For strong
damping the phase space trajectories approach the equilibrium point without
oscillations (Fig. 5.29b). The corresponding phase space portrait is termed a
knot.

5.4.3.2 Nonlinear systems and chaos. The situation changes dramati-
cally, if nonlinear systems, which are subjected to driving forces, are consid-
ered. A relevant example is the driven mathematical pendulum with damping.
The corresponding equation of motion

q̈ + bq̇ + ω2 sin q = d sinΩt (5.136)

contains, besides the terms of the usual mathematical pendulum, a frictional
Stokes term and a periodic driving force. This differential equation cannot be
solved analytically, however, extensive numerical investigations are possible.
Two examples for the numerical solution of the differential equation (5.136)
are shown in Fig. 5.30. The example of Fig. 5.30a, which has been obtained
with the parameters

b = 0.5, ω = 1, Ω = 2/3, d = 0.5

shows, after a transient period, a periodic, oscillatory motion. The same set
of parameters, except for d = 1.2 , have been used for the calculation of the
time development in the second example (Fig. 5.30b). The result is obviously
not periodic. Quite different structures of the solutions can be obtained for
different values of the parameter d .

It should be emphasised that exactly the same result is obtained, if inte-
gration of the differential equation is repeated with exactly the same initial
values (and the same numerical method). This is a consequence of the deter-
ministic character of the problem. Solutions with close neighbouring values
for the initial conditions drift apart in an exponential fashion for the second
8 A crossing of phase space trajectories would indicate that a unique solution of

the equations of motion does not exist.
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(a) (b)
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d = 0.5
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q
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Fig. 5.30. The time development q(t) of the damped, driven pendulum for different
parameters (d)

type of solution. This phenomenon is illustrated by the phase space trajec-
tories in Fig. 5.31. The phase space trajectories, which are compared in this
figure, are obtained with the same set of parameters (with d = 1.2) but a
difference generated by a factor of 1.00001 in the initial angle.

(a) (b)

–2

0

2

dq/dt

0 20 40 60

q
q(0) = π/2

–2

0

2

dq/dt

0 20 40 60

q
q(0) = 1.00001(π/2)

Fig. 5.31. Phase space trajectories of the damped, driven pendulum (d = 1.2) for
two infinitesimally different initial conditions

Figure 5.32 shows the difference of the two solutions on a semi-logarithmic
scale. On the average the two solutions drift apart according to an exponential
law. Such a behaviour is called chaotic. It is impossible to predict the time
development of a realistic, chaotic physical system exactly, if the (possible
experimental) uncertainty in the initial values is taken into account.

A representation of the motion in a phase space plot as in Fig. 5.31a,b
does not provide sufficient insight into the structure of such solutions. A more
distinct representation is possible with Poincaré cuts, in which only phase
space points for times with tk = 2πk/ω are included. The Poincaré cut for

5.4 Hamilton’s formulation of mechanics
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–8
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–4

–2

0

2

delta q

20 40 60 80 100

t
Fig. 5.32. Deviation of the solutions in
Fig. 5.31 as a function of time

the trajectory of a periodic motion with the frequency ω of the driving force
would contain only a single point in such a stroboscopic representation. The
pendulum returns to the same point after the same time interval Δt with the
same velocity. In Fig. 5.33a the phase space plot of another oscillatory solution
(with the parameters b = 0.5, ω = 1, Ω = 2/3, d = 1.1) of the differential
equation (5.136) is illustrated. The Poincaré cut with Δt = 2π/3ω contains 6
points in this example, which are ’illuminated’ during the time development
of the motion in the same sequence (Fig. 5.33b).

(a) (b)
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dq/dt

0 5 10

q

phase space plot

–2

–1

0

1

dq/dt

–2 0 2

q

Poincaré cut

Fig. 5.33. Phase space plot and Poincaré cut of a solution for the driven pendulum
(5.136)

Such regular repetitions do not occur for a chaotic motion. The Poincaré
cuts can, however, display remarkable structures (see Fig. 5.34). The analysis
of such structures is one of the tasks of the dynamics of nonlinear systems.
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Fig. 5.34. Poincaré cut for a chaotic so-
lution
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6 Application of the Lagrange Formalism

Only a few selected examples of the many possibilities to apply the Lagrange
equations of the second kind can be presented here. Two subjects will be
treated more extensively besides the discussion of systems of coupled har-
monic oscillators. These are rotating coordinate systems, a prime example
for noninertial systems, and the motion of rigid bodies, the theory of spin-
ning tops.

6.1 Coupled harmonic oscillators

The simplest system of coupled linear oscillators consists of two masses which
are connected by a spring. The masses are attached to a suitable support by
two additional springs (Fig. 6.1). A linear oscillator chain can be constructed
by the addition of further units consisting of a mass and a spring. Such sys-
tems are capable of oscillating in the longitudinal (along the chain) as well
as in the transverse direction (perpendicular to the chain). In the follow-

2x1x

20x10x

Fig. 6.1. Coupled oscillators: equilibrium po-
sition and displacement

ing sections the longitudinal oscillations of such systems, beginning with the
simplest system of two masses, will be investigated. As long as it is assumed
that the displacements from the equilibrium positions are not too large, the
discussion is based on equations of motion, which are linear (corresponding
to Hooke’s law) in the displacements. This property allows the introduction
of appropriate generalised coordinates, the normal coordinates, with the aid
of linear transformations, and therefore the analysis of relatively complicated
oscillating systems, which can serve as basic models in solid state physics.

R.M. Dreizler, C.S. Lüdde, Theoretical Mechanics, Graduate Texts in Physics,  
DOI 10.1007/978-3-642-11138-9_6, © Springer-Verlag Berlin Heidelberg 2010 
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The structure of the Lagrange equations is quite similar for transverse
oscillations so that the methods and the results from the discussion of longi-
tudinal oscillations can be transferred directly. The aim in this case is solely
the derivation of an equation of motion for the transverse oscillations of a
string. The string is modelled by a transversely oscillating chain of N point
particles followed by the limiting process N −→ ∞ . The partial differential
equation, which describes the oscillations of the string, is an example of a
wave equation.

6.1.1 Coupled oscillating system: two masses and three springs

The simplest coupled oscillating system consists of two equal masses (m) and
three equal springs (with the spring constant k). In the equilibrium situation
the springs are relaxed. Of interest are here the oscillations of the system
in the direction of the chain, the x - direction (Fig. 6.1). The displacements
from the equilibrium positions x10, x20 will be denoted by x1 and x2 . Formal
constraints are yi = zi = 0 with i = 1, 2 . The Lagrange function is specified
by the kinetic energy

T =
m

2
ẋ2

1 +
m

2
ẋ2

2

and the potential energy. The two external springs act like external forces.
The external potential energy is therefore

U =
k

2
(x2

1 + x2
2) .

The central spring gives rise to a coupling of the two masses. It acts like
an internal force. The spring will be extended or compressed by the amount
|x1−x2| , if the mass m1 is displaced by the amount x1 (positive or negative)
and the mass m2 by the amount x2 (positive or negative). The potential
energy

V =
k

2
(x1 − x2)2

can be associated with this spring. The Lagrange function of this mass-spring
system

L = T − U − V =
m

2
(ẋ2

1 + ẋ2
2) − k(x2

1 − x1x2 + x2
2) (6.1)

leads to the equations of motion

d
dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= mẍ1 + 2kx1 − kx2 = 0

d
dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= mẍ2 − kx1 + 2kx2 = 0 .
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The two differential equations are coupled. A direct solution is not simple.
An alternative is an investigation of the possibility to introduce appropriate
generalised coordinates (q1 and q2) which leads to decoupled equations of
motion.

6.1.1.1 Eigenmodes. The observation which suggests a choice of the gen-
eralised coordinates is the fact, that the internal potential energy depends on
the difference of the Cartesian coordinates. It seems therefore worthwhile to
try the sum and the difference of the Cartesian coordinates as an ansatz for
the two generalised coordinates

q1 = x1 + x2 q2 = x1 − x2 .

The inverse of this linear transformation is

x1 =
1
2
(q1 + q2) x2 =

1
2
(q1 − q2) . (6.2)

These relations lead to a transformed Lagrangian in the generalised coordi-
nates with the terms

T =
m

2
(ẋ2

1 + ẋ2
2) =

m

8
(q̇2

1 + 2q̇1q̇2 + q̇2
2 + q̇2

1 − 2q̇1q̇2 + q̇2
2)

=
m

4
(q̇2

1 + q̇2
2)

U + V =
k

8
(
q2
1 + 2q1q2 + q2

2 + 4q2
2 + q2

1 − 2q1q2 + q2
2

)
=

k

4
(
q2
1 + 3q2

2

)
.

The Lagrangian

L =
m

4
(q̇2

1 + q̇2
2) − k

4
(
q2
1 + 3q2

2

)
(6.3)

indicates already that the equations of motion in the generalised coordinates
will be decoupled. One derives directly

m

2
q̈1 +

k

2
q1 = 0 −→ q̈1 + ω2

1q1 = 0 with ω1 =

√
k

m
(6.4)

m

2
q̈2 +

3k
2

q2 = 0 −→ q̈2 + ω2
2q2 = 0 with ω2 =

√
3k
m

.

These differential equations characterise two harmonic oscillators with differ-
ent frequencies. The general solution of the differential equations (6.4) can
be written down immediately

q1(t) = A1 cos(ω1t + δ1) q2(t) = A2 cos(ω2t + δ2) . (6.5)
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The coordinates q1 and q2 are the normal coordinates or normal (or
eigen) modes of the system. The corresponding frequencies ω1 and ω2 are
the normal frequencies or eigenfrequencies.

An interpretation of the normal coordinates can obtained, if special sets
of initial conditions are considered.

The symmetric normal mode corresponds for instance to the initial conditions

x1(0) = x2(0) = A ẋ1(0) = ẋ2(0) = 0 .

Both masses are initially displaced by the same amount to the right (Fig. 6.2).
The left spring is stretched, the right one is compressed. The central spring
is relaxed. The initial conditions for the normal coordinates are

AA

kkk mm

Fig. 6.2. Symmetric normal mode: initial con-
ditions for the Cartesian coordinates

q1(0) = 2A q2(0) = 0 q̇1(0) = q̇2(0) = 0 ,

so that the special solution

q1(t) = 2A cosω1t q2(t) = 0

is obtained. The motion of the individual masses is described in Cartesian
coordinates by the equations

x1(t) =
1
2
q1(t) = A cosω1t x2(t) =

1
2
q1(t) = A cosω1t .

The two masses oscillate synchronously in the same direction with the fre-
quency ω1.

AA

kkk mm

Fig. 6.3. Antisymmetric normal mode: initial
conditions for the Cartesian coordinates

The antisymmetric normal mode is determined by the initial conditions

x1(0) = −x2(0) = A ẋ1(0) = ẋ2(0) = 0 .
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Both external springs are stretched in this case, the central spring is com-
pressed (Fig. 6.3).

The corresponding statements for the time development of the motion are

q1(0) = 0 q1(t) = 0 q̇1(0) = 0

q2(0) = 2A q2(t) = 2A cosω2t q̇2(0) = 0

x1(t) = A cosω2t x2(t) = −A cosω2t .

The two masses oscillate with the frequency ω2 in opposite directions.
The antisymmetric normal oscillation has a higher frequency

ω1 =

√
k

m
< ω2 =

√
3k
m

.

This difference in the frequencies can be associated directly with the amount
of energy which is originally stored by the system in the two cases. The initial
energies of the symmetric (s) and the antisymmetric (a) normal oscillations
are, respectively

Es(0) = Ts(0) + Us(0) + Vs(0)

= 0 +
k

2
A2 +

k

2
A2 + 0 = kA2 = ω2

1(mA2)

Ea(0) = Ta(0) + Ua(0) + Va(0)

= 0 +
k

2
A2 +

k

2
A2 +

k

2
(2A)2 = 3kA2 = ω2

2(mA2) .

The mode with the larger amount of potential energy, initially stored in the
springs, exhibits a higher frequency.

6.1.1.2 General oscillatory modes of two mass system. Any addi-
tional pattern for the oscillations of the mass-spring system can be obtained
by a superposition of the two basic oscillations. Consider e.g. the initial con-
ditions for the Cartesian coordinates

x1(0) = A x2(0) = 0 ẋ1(0) = ẋ2(0) = 0 . (6.6)

The mass m1 is initially displaced by the amount A to the right. The second
mass is at rest in the equilibrium position. One of the external springs is
stretched, the central spring is compressed. The initial conditions for the
normal coordinates are

q1(0) = q2(0) = A q̇1(0) = q̇2(0) = 0 .

This leads to

q1(t) = A cosω1t q2(t) = A cosω2t

and hence to
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x1(t) =
A

2
(cosω1t + cosω2t) x2(t) =

A

2
(cosω1t − cosω2t) .

The result is sketched in Fig. 6.4. The two normal modes are shown in

(a) (b)

-A

 A
 2

 q  (t)

 1
 q  (t)

 q(t)

 1 ω  t

the normal modes

-A

 A  2 x  (t)

 1 x  (t)

 x(t)

 1 ω  t

the actual oscillations

Fig. 6.4. Coupled oscillator (two equal masses, three equal springs) with the initial
conditions (6.6)

Fig. 6.4a: the slower symmetric oscillation q1(t) and the faster (by a fac-
tor

√
3 ≈ 1.7) antisymmetric oscillation q2(t) . The superposition of the two

basic oscillations does not yield a harmonic pattern for x1 or x2 , but a more
complex oscillatory (though periodic) motion (Fig. 6.4b). Whenever the dis-
placement of m2 is (cum grano salis) large, small displacements are found
for m1 and vice versa. This is a consequence of energy conservation. Such a
pattern, which shows up in this example, is of certain technical interest. The
continuous interchange of the amplitudes of the two oscillations is referred to
as a beat.

6.1.2 Beats

Beats are developed more fully, if the springs in the system are different, for
instance if the central spring has a different spring constant (k2) as compared
to the two exterior springs (k1). The masses are again taken to be equal
(Fig. 6.5). The Lagrangian for this system is

mm

1k2k1k
Fig. 6.5. Coupled oscillator (two equal masses, differ-
ent springs)

L =
m

2
(
ẋ2

1 + ẋ2
2

)− k1

2
(
x2

1 + x2
2

)− k2

2
(x1 − x2)

2
. (6.7)
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An uncoupled system of equations of motion is also found in this example if
the generalised coordinates

q1 = x1 + x2 q2 = x1 − x2

are used. The transformed Lagrangian

L =
m

4
(
q̇2
1 + q̇2

2

)− k1

4
(
q2
1 + q2

2

)− k2

2
q2
2 (6.8)

leads to the equations of motion

q̈1 + ω2
1q1 = 0 with ω1 =

√
k1

m
(6.9)

q̈2 + ω2
2q2 = 0 with ω2 =

√
k1 + 2k2

m
.

The normal oscillations are per definition harmonic oscillations. The results
for the frequencies correspond to the previous results if k1 = k2 (Chap. 6.1.1).
The actual motion of the individual masses for the initial conditions (6.6) is
once more described by

x1(t) =
A

2
(cosω1t + cosω2t) x2(t) =

A

2
(cosω1t − cosω2t) . (6.10)

The motion of the two masses is found to couple1 weakly, if the central
spring is very soft (k2 
 k1). The approximation

ω2 =

√
k1

m
+

2k2

m
=

√
k1

m

√
1 +

2k2

k1
≈ ω1 + 2Δ

(
Δ =

1
2
ω1

k2

k1

)
(6.11)

can be derived in this case with the aid of the binomial expansion. The
relations

cosα + cosβ = 2 cos
(

α + β

2

)
cos

(
α − β

2

)

cosα − cosβ = −2 sin
(

α + β

2

)
sin

(
α − β

2

)
,

which are obtained directly from the sum and difference formulae of the
trigonometric functions, can be used to rewrite the sum and the difference
of the cosine functions. The arguments of the trigonometric functions on the
right hand side, with α = ω1t and β = ω2t , are

1
2

(ω1 − ω2) t ≈ −Δt
1
2

(ω1 + ω2) t ≈ ω1t .

The difference of the two frequencies Δ is (by assumption) small and can
be neglected in comparison with ω1. The time development of the Cartesian
coordinates is therefore given by
1 A spring with a smaller spring constant experiences a larger extension for a given

force.
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x1(t) ≈ [A cosΔt] cosω1t x2(t) ≈ − [A sinΔt] sinω1t . (6.12)

The corresponding motion can be described as follows: The term cosΔt rep-
resents a cosine function that changes slowly with time, the term cosω1t
corresponds to a fast oscillation. The product of the amplitude A and the
slow component can be regarded as an amplitude varying slowly with time
for small values of Δ. This factor constitutes the envelope for the second
cosine function which oscillates much faster (Fig. 6.6a). The motion of the
mass m2 is described by a corresponding function with a sinusoidal oscillation
within a sinusoidal envelope (Fig. 6.6b).

(a) (b)

 1 x

 t

Real oscillation, coordinate x1

 2 x

 t

Real oscillation, coordinate x2

Fig. 6.6. Beats (for k2 < k1)

A comparison of the two solutions invites the comment: the initial con-
ditions were chosen, so that the mass m1 is initially displaced and that the
mass m2 is at rest. The amplitude of the second mass increases slowly as a
consequence of the weak coupling to the motion of the first mass, the am-
plitude of this mass decreases. The first mass is nearly at rest after some
time, while the second one oscillates at full force. The exchange of energy
between the two masses is then reversed and repeated periodically. A peri-
odic exchange of energy (with the period Δ) between the two masses takes
place. This phenomenon of beats occurs also for different exterior springs
and different masses. The exchange of energy is, however, not complete in
this case.

The phenomenon of beats was first (about 1900) observed in electrical
engineering. A circuit of two alternating current generators (electrical os-
cillators), connected in parallel, developed current and voltage oscillations,
which follow the pattern indicated for the mechanical equivalent. They were
(naturally) not very welcome in this case.

6.1.3 The linear oscillator chain

A more general problem will be discussed after these simpler examples: the
linear oscillator chain of N masses. This problem constitutes a classic example
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for the application of the Lagrange formalism to more complicated problems
of motion. The linear oscillator chain has played a role in the foundation of
the (classical) theory of solids. The discussion centres, from a mathematical
point of view, on the algebraic eigenvalue problem.

Eigenvalue problems are met in different forms in physics. Examples are the
discussion of the solution of differential equations with boundary conditions or
the application of linear transformations, which lead to homogeneous, linear sys-
tems of algebraic equation. Algebraic eigenvalue problems are reviewed in
Math.Chap. 3.2.4.

In the simplest chain only nearest neighbours are connected by springs. It
is composed of N different masses and N +1 different springs (Fig. 6.7). The
task is the calculation of possible longitudinal oscillations of this chain. The

Nm2m1m

N+1kNk2k1k
Fig. 6.7. The linear oscillator chain with dif-
ferent masses and different springs with a cou-
pling of nearest neighbours

Lagrangian of this system in terms of Cartesian coordinates, which describe
the displacement from the equilibrium positions, is

L =
m1

2
ẋ2

1 + . . . +
mN

2
ẋ2

N (6.13)

−
{

1
2
k1x

2
1 +

1
2
k2(x2 − x1)2 +

1
2
k3(x3 − x2)2

+ . . . +
1
2
kN (xN − xN−1)2 +

1
2
kN+1x

2
N

}
.

A mathematically more transparent alternative emerges, if all the terms of
the potential energy are multiplied out and sorted in the form of products.
The Lagrangian then reads

L =
N∑

i=1

mi

2
ẋ2

i −
1
2

N∑
i=1

N∑
l=1

Bilxixl . (6.14)

The coefficients Bil are related to the spring constants by

Bii = ki+1 + ki

Bi+1,i = Bi,i+1 = −ki+1

Bil = 0 if l �= i or l �= i ± 1

(6.15)

in the case of a coupling of nearest neighbours. This form turns out to be
convenient, even if the coupling is more complicated than the coupling of
nearest neighbours.
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The Lagrangian (6.14) leads (in the general case) to the equations of
motion

miẍi +
N∑

l=1

Bilxl = 0 (i = 1, 2, . . . N) . (6.16)

6.1.3.1 Determination of the eigenmodes. This system of coupled, ho-
mogeneous linear differential equations of second order (with constant coef-
ficients) is to be solved, respectively to be discussed. The examples with two
masses suggest, that the differential equations can be decoupled by a linear
transformation to normal coordinates

xi(t) =
N∑

μ=1

aiμqμ(t) . (6.17)

The form

qμ(t) = Aμ cos(ωμt + δμ) (6.18)

is expected for the normal coordinates. The amplitudes Aμ and the phases
δμ are, as in the examples with two masses, to be determined via the initial
conditions. The following quantities have to be calculated

(1) The eigenfrequencies ωμ.
(2) The expansion coefficients aiμ. The fact that a linear transformation be-

tween the coordinates qμ and xi is adequate, follows from the linearity of
the differential equations (6.16) for the coordinates xi .

(3) In addition, the consistency of the ansatz (6.18) should be checked in the
end.

Insertion of the ansatz (6.17) into the system of differential equations
(6.16) and use of the relation

q̈μ(t) = −ω2
μqμ ,

in accordance with (6.18), leads to the equations
N∑

μ=1

{
N∑

l=1

Bilalμ − ω2
μmiaiμ

}
qμ(t) = 0 (i = 1, 2, . . . N) .

The following argument can be given if it is assumed 2 that the eigenfrequen-
cies are different

ω1 < ω2 < . . . < ωμ .

As the functions qμ(t) are linearly independent3 each of the equations above
can only be satisfied if the coefficients of qμ(t) in each of the equations van-
ishes. As a consequence a system of equations of the form
2 The case that some of the frequencies are equal can also be discussed. The

discussion is, however, more involved.
3 The concise definition of linear independence is addressed in Math.Chap. 3.2.4.
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(B11 − m1ω
2
μ)a1μ+ B12a2μ+. . . B1NaNμ = 0

B21a1μ+ (B22 − m2ω
2
μ)a2μ+. . . B2NaNμ = 0

... . . .

BN1a1μ+ BN2a2μ+. . .(BNN − mNω2
μ)aNμ = 0 ,

which is summarised as
N∑

l=1

Bilalμ − ω2
μmiaiμ = 0 (i = 1, 2, . . . N) , (6.19)

is found for each index μ (μ = 1, . . . , N) . This homogeneous system of linear
equations for the coefficients a1μ . . . aNμ has then and only then a nontrivial
solution if the determinant of the coefficients of the system vanishes.

This theorem of linear algebra is discussed in Math.Chap. 3.2.4.

This condition presents a possibility to determine all the frequencies (the
eigenfrequencies) of the chain. For this purpose the index μ in the determinant
of the coefficients is dropped temporarily so that the determinant of the
system (6.19) reads

det
∣∣Bil − ω2miδil

∣∣ = 0 (6.20)

or in full detail∣∣∣∣∣∣∣∣∣∣

(B11 − m1ω
2) B12 B13 . . . B1N

B21 (B22 − m2ω
2) B23 . . . B2N

... . . .

BN1 BN2 BN3 . . . (BNN − mNω2)

∣∣∣∣∣∣∣∣∣∣
= 0 .

The evaluation of this determinant yields an equation of N -th degree for ω2

α1(ω2)N + α2(ω2)N−1 + . . . αN (ω2) + αN+1 = 0 . (6.21)

This equation is the characteristic or secular equation. Its N roots, the
squares of the eigenfrequencies ω2

μ (also called the characteristic frequencies),
are the solutions of (6.20), for which the transformation between the gen-
eralised coordinates qμ and the Cartesian coordinates xi is nontrivial. Real
(positive) values for ωμ , are only obtained, if the relation

ω2
μ ≥ 0

is satisfied for all μ. The fact, that the solutions of the secular equation cor-
respond to the squares of positive definite frequencies, follows from a second
theorem of linear algebra: The roots of the secular equation are real and
positive, if the matrix of the coefficients (Bik) is real and symmetric. This
property is expressed by (6.15). It is actually a consequence of the third axiom
for the forces between the springs.
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After the calculation of the eigenfrequencies (respectively their squares)
the determination of the expansion coefficients {aiμ} for each value of μ is
the next task. As each system of linear equations (6.19) is homogeneous, it
is only possible to determine ratios of the coefficients, as e.g.

a1μ

aNμ
,

a2μ

aNμ
, . . . ,

aN−1μ

aNμ
for aNμ �= 0 .

This indetermination has no physical consequence. As the inequalities∑
i

mia
2
iμ > 0

are valid, each of these sums of positive quantities can be scaled so that∑
i

mia
2
iμ = 1 (μ = 1, 2, . . . N) . (6.22)

The normalisation determines all coefficients aiμ uniquely.
It is possible to prove another property of the coefficients {aiμ} which

allows a direct geometrical interpretation. Consider (6.19) for a frequency ωμ

ω2
μmiaiμ =

∑
l

Bilalμ (i, μ = 1, 2, . . . N) (6.23)

and the same relation for a different frequency ων (ν �= μ)

ω2
νmiaiν =

∑
l

Bilalν (i, ν = 1, 2, . . . N) . (6.24)

The i-th equation from the set (6.23) is multiplied by aiν and summed over i

ω2
μ

∑
i

miaiμaiν =
∑
il

Bilalμaiν .

The i-th equation of the set (6.24) is multiplied by aiμ in the same manner
and summed over i . Subtraction of the two resulting equations yields the
relation

(ω2
μ − ω2

ν)
∑

i

miaiμaiν =
∑
il

(Bilaiνalμ − Bilaiμalν) .

The right hand side vanishes due to the symmetry of the coefficients Bil∑
il

(Bilaiνalμ − Bilaiμalν) =
∑
il

aiνalμ(Bil − Bli) = 0 .

As it was assumed that ωμ �= ων , it follows, that∑
i

miaiμaiν = 0 for (μ �= ν, μ, ν = 1, 2, . . . N) . (6.25)

The normalisation (6.22) and the property of the solution just demonstrated
allow the following interpretation: the set of coefficients

(
√

m1a1μ,
√

m2a2μ, . . . ,
√

mNaNμ) = aμ
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can be interpreted as the components of a vector in an N -dimensional (ab-
stract) vector space (see Math.Chap. 3.1.3). The vector aμ is called the
eigenvector associated with the eigenvalue (eigenfrequency) ωμ . The re-
sults obtained for the eigenvectors can be summarised in the form

aμ · aν = δμν . (6.26)

Such a scalar product of eigenvectors is termed an orthonormality re-
lation. The N eigenvectors have the length 1 and are perpendicular with
respect to each other.

It remains to check the consistency of the ansatz (6.18). The Lagrangian
has to be expressed in terms of the normal coordinates for this purpose. The
transformation (6.17) gives

ẋi(t) =
∑

n

aiμq̇μ(t)

as the expansion coefficients aiμ are independent of time. The kinetic energy

T =
∑

i

mi

2
ẋ2

i =
1
2

∑
i,μ,ν

(miaiμaiν) q̇μq̇ν

is simplified with the orthogonality relation (
∑

i) as

T =
1
2

∑
μ,ν

δμ,ν q̇μq̇ν =
1
2

∑
μ

q̇2
μ .

The potential energy in (6.14)

U + V =
1
2

∑
il

Bilxixl =
1
2

∑
ilμν

(Bilaiμalν) qμqν

is reformulated with the equations of motion (6.19)∑
il

(Bilalν) aiμ = ω2
ν

∑
i

miaiνaiμ = ω2
νδμν

so that

U + V =
1
2

∑
μ

ω2
μq2

μ

is obtained. The Lagrangian in terms of the normal coordinates takes the
form

L =
1
2

∑
μ

(
q̇2
μ − ω2

μq2
μ

)
. (6.27)

This corresponds to the equations of motion

q̈μ + ω2
μqμ = 0 (μ = 1, 2, . . . N) . (6.28)

The ansatz (6.18) is consistent.
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6.1.3.2 Summary of the solution for the linear chain. The algebraic
eigenvalue problem is found in many areas of physics. It is therefore oppor-
tune to summarise the rather detailed argumentation for the solution of the
problem of the linear oscillator chain in the form of a recipe, which can be
applied in other circumstances.

Starting point is the Lagrangian (6.14)

L =
N∑

i=1

mi

2
ẋ2

i −
1
2

N∑
il=1

Bilxixl .

The following steps have to be executed in order to find the solution:

Step 1: Use the ansatz for the normal modes (6.18)

qμ(t) = Aμ cos (ωμt + δμ) .

The parameters Aμ and δμ are to be determined from the initial conditions.
Set up the characteristic equation (secular equation) (6.20) or (6.21)

det
∣∣Bil − ω2miδil

∣∣ = 0

and determine the eigenfrequencies ωμ.
Step 2: For each of the eigenfrequencies solve the system of linear equa-
tions (6.19)

N∑
l=1

(
Bil − ω2

μmiδil

)
alμ = 0 (i = 1, 2, . . . N for each μ)

using the normalisation condition (6.22)

N∑
i=1

mia
2
iμ = 1

to obtain the eigenvectors. The transformation between the Cartesian and
the normal coordinates is

xi(t) =
N∑

μ=1

aiμqμ(t) .

Step 3: Calculate the integration constants {A1, δ1, . . . AN , δN} using the
initial conditions

{x1(0), ẋ1(0), . . . xN (0), ẋN (0)} .

These steps are illustrated with some explicit examples.



6.1 Coupled harmonic oscillators 285

6.1.3.3 Examples of linear oscillator chains.

• The first example is the short chain, however with two different masses and
three different springs. Starting with the Lagrangian

L =
1
2
(
m1ẋ

2
1 + m2ẋ

2
2

)− 1
2
(
k1x

2
1 + k2(x1 − x2)2 + k3x

2
2

)
(6.29)

one finds for the squares of the eigenfrequencies (see Probl. 6.1)

(ω2)1,2 =
1
2

(
k1 + k2

m1
+

k2 + k3

m2

)
(6.30)

± 1
2

[(
k1 + k2

m1
− k2 + k3

m2

)2

+
4k2

2

m1m2

]1/2

> 0 .

The eigenfrequencies are the positive square roots of these positive quan-
tities. The results for the simpler cases, which have been discussed before,
are contained in (6.30).
The determination of the eigenvectors is more time consuming. The sys-
tems of equations are simple for the special case of equal masses and equal
springs

+ka11 − ka21 = 0
for ω1 =

√
k

m−ka11 + ka21 = 0

and

−ka12 − ka22 = 0
for ω2 =

√
3k
m

.−ka12 − ka22 = 0

The solution corresponds (up to the question of normalisation) to the
ansatz (6.2), which has been guessed in Chap. 6.1.1.1

x1 = a11q1 + a12q2 =
1√
2m

(q1 + q2) (6.31)

x2 = a21q1 + a22q2 =
1√
2m

(q1 − q2) .

• The next example is a chain with three equal masses and four equal springs
characterised by the Lagrangian

L =
m

2
(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
(6.32)

−1
2
(
2kx2

1 − kx1x2 − kx2x1 + 2kx2
2 − kx2x3 − kx3x2 + 2kx2

3

)
.

The secular equation is here∣∣∣∣∣∣∣
2k − mω2 −k 0

−k 2k − mω2 −k

0 −k 2k − mω2

∣∣∣∣∣∣∣ = 0 .
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Evaluation of the determinant leads to

(2k − mω2)
[
(2k − mω2)2 − 2k2

]
= 0 .

The square roots of the solutions of this cubic equation in ω2 are

ω1 =

√
(2 −

√
2)

k

m
ω2 =

√
2

k

m
ω3 =

√
(2 +

√
2)

k

m
. (6.33)

The eigenvectors have to be determined next and the initial conditions (see
D.tail 6.1) have to be incorporated. Three linear systems of equations

have to be solved for the determination of the expansion coefficients. The
structure is in every case

(2k − ω2
μm)a1μ − ka2μ = 0

−ka1μ + (2k − ω2
μm)a2μ − ka3μ = 0

−ka2μ + (2k − ω2
μm)a3μ = 0 .

Solution of these systems of equations for the three eigenvalues (6.33) yields
the normalised eigenvectors

a1(t) =
(

1
2

,
1√
2

,
1
2

)
1√
m

a2(t) =
(

1√
2

, 0 , − 1√
2

)
1√
m

a3(t) =
(

1
2

, − 1√
2

,
1
2

)
1√
m

.

The determination of a special solution for a given set of initial values
requires the solution of a system of six equations for the amplitudes and
the phases of the normal modes (6.18). The set of initial values

x1(0) = x0 x2(0) = x3(0) = 0 ẋ1(0) = ẋ2(0) = ẋ3(0) = 0

indicates that the first mass is initially displaced to the right, the others
remain at the equilibrium position. The parameters of the normal modes
are found to be

A3 = A1 A2 =
√

2A1 A1 =
x0

√
m

2
and

δ1 = δ2 = δ3 = 0

so that the explicit Cartesian solution for this example is

x1(t) =
x0

2

(
1
2

cosω1t + cosω2t +
1
2

cosω3t

)

x2(t) =
x0

2
√

2
(cosω1t − cosω3t) (6.34)
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x3(t) =
x0

2

(
1
2

cosω1t − cosω2t +
1
2

cosω3t

)
.

The resulting, quite complex pattern of oscillations is illustrated in Fig. 6.8.

 3 x 2 x

 1 x

–1

 1

 0
 x/x

 tk/m √

Fig. 6.8. Coupled oscillator: three equal
masses and four equal springs

• The linear oscillator chain with a large number of masses oscillating in the
longitudinal direction can serve as a model for a one dimensional crystal.
The simplest possible model is a chain with N equal masses and N + 1
equal springs between next neighbours (respectively the boundary). The
eigenfrequencies and the transformation between the Cartesian and the
normal coordinates can be calculated in an analytical fashion for this model
because of the simple structure of the matrix [B] consisting of the diagonal
and a symmetric band next to the diagonal.
The specifications of the boundary conditions for the Lagrangian (6.13)
with the masses mi = m and and the spring constants ki = k is comple-
mented by addition of two boundary points

x0(t) = 0 and xN+1(t) = 0 . (6.35)

The equations of motion, that can be extracted from the Lagrangian

L =
1
2

N+1∑
i=1

{mẋi + k(xi − xi−1)2} ,

are

mẍl − k (xl−1 − 2xl + xl+1) = 0 (l = 1, . . . , N) . (6.36)

The ansatz (6.17) and a representation of the normal modes (6.18) by
linearly independent sine and cosine functions (instead of one trigonometric
function with amplitude and phase)

xl(t) =
N∑

μ=1

(alμ cosωμt + blμ sinωμt) (6.37)
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leads, after insertion into the equation of motion for each l = 1, . . . , N , to
the expression

N∑
μ=1

{ (−kal−1,μ + (2k − mω2
μ)alμ − kal+1,μ) cosωμt

+ (−kbl−1,μ + (2k − mω2
μ)blμ − kbl+1,μ) sinωμt} = 0 . (6.38)

The boundary condition (6.35) requires

alμ = blμ = 0 for l = 0, (N + 1) and for all μ = 1, . . . , N .

The equations (6.38) can only be satisfied if the individual factors of the
sine and cosine function vanish4. The resulting system of linear equations
for the coefficients alμ and blμ are identical. It is sufficient to consider one
of these systems. A nontrivial solution of the system for alμ (suppress the
index μ)

−kal−1 + (2k − mω2)al − kal+1 = 0 (6.39)

can only be obtained if the N × N determinant of the coefficient vanishes∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2k − mω2 −k 0 0 · · · · · · 0

−k 2k − mω2 −k 0 · · · · · · 0
...

...
...

...
...

...
...

. . . . . . . . . . . . −k

0 · · · · · · · · · 0 −k 2k − mω2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

The evaluation of the characteristic equation of N -th degree by direct
means is rather cumbersome for large values of N . A more elegant evalu-
ation is offered by the ansatz

al = aei(lα−β) . (6.40)

The use of the complex exponential function abbreviates the argumenta-
tion. Actually, only the real part is of interest.

Simple functions of complex variables are discussed in Math.Chap. 7.

The condition
4 A formal proof of this statement is based on the use of the integral∫ ∞

−∞
dt ei(ω1−ω2)t = 2π δ(ω1 − ω2)

and the decomposition of the integral into real and imaginary parts. The delta
function, which occurs here, will, however, only be introduced in Vol. 2. A
less formal argument uses the fact that the trigonometric functions are linearly
independent, so that the relation (6.38) can only be satisfied for all values of the
variable t , if the coefficients of the functional series vanish.
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−e−iα + (2 − m

k
ω2) − eiα = 0

results, if this ansatz is inserted into each of the equations of the system
(6.39) and if common factors are eliminated. Resolution with respect to ω2

yields

ω2 =
k

m

(
2 − e−iα − eiα

)
= 2

k

m
(1 − cosα) = 4

k

m
sin2 α

2
. (6.41)

In the last step a special form of the sum formula for trigonometric func-
tions has been used.
The relation (6.41) is valid for each of the N roots of the characteristic
equation. The explicit form, after reintroduction of the index μ , is

alμ = aμei(lαμ−βμ) (l = 0, 1, . . . , (N + 1); μ = 1, . . . , N)

and

ωμ = 2

√
k

m
sin

αμ

2
(μ = 1, . . . , N) . (6.42)

The parameters αμ and βμ can be determined from the boundary condi-
tions, which demand

a0μ = aN+1,μ = 0 . (6.43)

The condition a0μ = 0 gives

0 = a0μ = aμ cosβμ

if (6.40) is used and if it is assumed (without restricting the generality)
that aμ is real (obviously the expansion coefficients for the expansion of
the Cartesian coordinates in terms of trigonometric functions have to be
real). This condition requires βμ = π/2 (modulo π times an odd number).
The second condition in (6.43)

0 = aN+1,μ = aμ cos
[
(N + 1)αμ − π

2

]
= aμ sin [(N + 1)αμ]

then gives

αμ =
μπ

N + 1
.

These results lead to a general formula for the eigenfrequencies

ωμ = 2

√
k

m
sin

[
μπ

2(N + 1)

]
(6.44)

and, on the basis of a similar calculation for the contribution of the sine
functions, to the expansion of the Cartesian coordinates in terms of the
generalised coordinates
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xl(t) =
N∑

μ=1

sin
(

lμπ

N + 1

)
(aμ cosωμt + bμ sinωμt) . (6.45)

The expansion coefficients aμ, and bμ (corresponding to Aμ and ϕμ in the
previous ansatz for the normal modes) are fixed by the initial conditions
(see D.tail 6.2)

{xl(0), ẋl(0)} (l = 1, . . . , N) .

In consequence of the periodic structure of the formula (6.44) for the fre-
quencies only a finite number of eigenvalues occurs. The sum formula for
the sine function gives

sin
(

(N + 1 + r)π
2(N + 1)

)
= sin

(
(N + 1 − r)π

2(N + 1)

)
so that

ωN+1+r = ωN+1−r (6.46)

follows. The frequency spectrum is repeated, be it in inverse order, if values
with μ > (N +1) are considered. There exist exactly (N +1) eigenfrequen-
cies, if the modes with μ = 0 and μ = (N + 1) are included as a single
equivalent zero mode (see (6.45)).
The formulae, which have been obtained here, reproduce the results of the
previous examples with equal masses and equal springs. The frequency
formula (6.44) reduces for instance for the example with N = 2 to

ω1 = 2

√
k

m
sin

π

6
=

√
k

m
ω2 = 2

√
k

m
sin

π

3
=

√
3k
m

.

Besides longitudinal oscillations of the linear oscillator chain transverse
oscillations are of interest. In particular, the differential equation for an
oscillating string can be derived by investigation of transverse modes. This
partial differential equation of second order in time and one coordinate,
describes the propagation of transverse wave forms along the string.

6.1.4 The differential equation of an oscillating string

The basis for the model of an oscillating string is a linear oscillator chain
in which a set of N equal mass points is attached to an elastic string in
the x - direction (Fig. 6.9). The uniform distance of the particles is d in the

 L=(N+1)d

 y
 m m m m

 d Fig. 6.9. Modelling a uniform, oscillating
string
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equilibrium situation. The total length of the unextended string is therefore
L = (N + 1) d . Instead of longitudinal oscillations, transverse oscillations of
the mass points, with small displacements in the y - direction, are considered
in this model (Fig. 6.10a).

The restoring force acting on the k -th particle, which is caused by the
tension of the string due to the position of next neighbours, can be determined
in the following fashion: the forces on the k -th mass due to next neighbours
are decomposed into an x - and a y - component (see Fig. 6.10b)

F k−1,k = −τ sin θk−1ey − τ cos θk−1ex

F k+1,k = −τ sin θk+1ey + τ cos θk+1ex .

τ is the string tension, which can be assumed to be equal for both neighbours
provided the displacements are small. The following approximations are valid
in this case

sin θk−1 ≈ tan θk−1 =
yk − yk−1

d

sin θk+1 ≈ tan θk+1 =
yk − yk+1

d
cos θk−1 ≈ cos θk+1 ≈ 1 .

The x - components of the forces due to the neighbours cancel each other.
The restoring force acting on the k -th mass is therefore

F k = F k−1,k + F k+1,k = −τ

d
{(yk − yk−1) + (yk − yk+1)} ey . (6.47)

(a) (b)

 k+1 m

 k m

 k–1 m
 k+1 y k y

 k–1 y

 d d
vertical displacement

 k–1

 k

 d

 k–1 θ

 k–1 F

analysis of the forces

Fig. 6.10. Oscillating string

The boundary points can be included, if two particles, which do not move,
are attached at these points

y0(t) = yN+1(t) = 0 , ẏ0(t) = ẏN+1(t) = 0 .

The potential energy of the chain oscillating in the transverse direction can
be given as

U =
1
2

τ

d

N∑
i=0

(yi+1 − yi)2 .
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The derivative of U

F k = − ∂U

∂yk
ey

reproduces the force (6.47). The Lagrangian of the chain, which oscillates in
the transverse direction

L =
m

2

N+1∑
i=0

ẏ2
i − 1

2
τ

d

N∑
i=0

(yi+1 − yi)2 , (6.48)

is formally the same as the Lagrangian for longitudinal oscillations (with
coupling between next neighbours and equal spring constants). It would be
possible to discuss once more normal modes and other features.

In order to make the transition from this model to a realistic string, the
limiting processes

N −→ ∞ , d −→ 0 , so that (N + 1)d = L = const.
m −→ 0 , d −→ 0 , so that m/d = ρ = const.

have to be considered. The limits N −→ ∞ and d −→ 0 have to be ap-
proached so that the product (N + 1)d remains constant. At the same time
the limit m −→ 0 has to be taken in a fashion, so that the ratio m/d remains
constant. This ratio is the linear mass density ρ of the (continuous) uniform5

string. The Lagrangian (6.48) yields, after division by d , the equations of
motion

m

d
ÿi =

Fi

d
= τ

[
yi+1 − 2yi + yi−1

d2

]
(i = 1, . . . N) . (6.49)

The transition to the continuous limit requires the replacement

yi(t) −→ y(x, t) ,

where the position of the i -th mass is counted from the beginning of the chain.
The time derivative in (6.49) has to be replaced by a partial derivative, as y
is now considered to be a function of two variables. The resulting equation
of motion for each line element of the string

m

d

∂2y(x, t)
∂t2

= τ

[
y(x + d, t) − 2y(x, t) + y(x − d, t)

d2

]
is treated further by carrying out the limiting process on the right hand side
of this equation

lim
d→0

[
y(x + d, t) − 2y(x, t) + y(x − d, t)

d2

]
=

∂2y(x, t)
∂x2

.

The expression in the square brackets corresponds exactly to the representa-
tion of the second partial derivative with respect to x by a difference quotient.
In addition, m/d has to be replaced by ρ . The final result is a differential
5 The modelling of a nonuniform string with a function ρ(x) is also possible.
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equation for the change of the displacement y with time t and position x
along the string

∂2y(x, t)
∂t2

− τ

ρ

∂2y(x, t)
∂x2

= 0 . (6.50)

This is the wave equation for a continuous, one dimensional system. It is
a partial differential equation of second order. The standard form of the
wave equation contains the quantity

v =
√

τ

ρ
(6.51)

with the dimension

[v] =
[
ML

T 2
· L

M

]1/2

=
[
L

T

]
of a velocity. This velocity actually corresponds to the phase velocity of
the wave.

A discussion of partial differential equations, including the discussion of the
wave equation and its solution is found in Vol. 2.

The standard form of the wave equation is therefore

∂2y(x, t)
∂x2

− 1
v2

∂2y(x, t)
∂t2

= 0 .

A specification of boundary conditions as e.g.

y(0, t) = 0 , y(L, t) = 0 (6.52)

is required for a complete determination of an explicit solution in the case of a
string of length L fixed at both ends. In addition initial conditions concerning
the position and the time derivative of the function y(x, t) at time t = 0 , as
e.g.

y(x, 0) = f(x)
∂y(x, t)

∂t

∣∣∣∣
t=0

= g(x) (6.53)

are needed. The string has a definite form at time t = 0 and each ’point’ has a
definite velocity in the transverse direction. Different wave forms (Fig. 6.11)
can be generated by this specification of the boundary and the initial condi-
tions. The specification of the boundary conditions (6.52) leads to standing
waves with frequencies (or wavelength), which are adapted to the length of the
string. Arbitrary wave structures, which move along the string (Fig. 6.11b),
are obtained for the more general initial conditions.

The next section deals with the subject of rotating coordinate systems.
This subject is a good example for the demonstration of effects observed in
noninertial systems. The nature and the structure of the apparent forces in
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(a) (b)

 t > 0

 t = 0

standing wave

 t > 0

 t = 0

moving wave structures

Fig. 6.11. Illustration of oscillating strings

rotating coordinate frames is investigated in the first part of the next section.
The second part is devoted to a discussion of the effects of these noninertial
forces on the rotating earth.

6.2 Rotating coordinate systems

A coordinate system attached to the earth represents a rotating coordinate
system. This raises the question, how the description of motion from the
point of view of the rotating earth (our point of view!) will be influenced
by the accelerated motion of this frame of reference. The question can be
put more precisely in the following fashion (Fig. 6.12): an ’observer’ in an
inertial system S (with the coordinates (x1, x2, x3)) examines a physical
process (e.g. the time development of the motion of an object) from the
point of view of his/her coordinate system. A second ’observer’ registers the
same process, however from the point of view of a coordinate system S′

(coordinates (q1, q2, q3)), which rotates with respect to the inertial system
about a given axis. The axis of rotation passes through the common origin of

 3 q
 2 q

 1 q

 3 x

 2 x

 1 x

ω S’ 

 S

Fig. 6.12. Inertial coordinate system S and rotating
system S′

the two coordinate systems. The practical question, that has to be posed, is:
how can the description of the time development of the motion of an object
from the point of view of S be transcribed into a description of this motion
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from the point of view of S′ and vice versa? In particular, it should be asked:
how can the equations of motion used by the observer in the initial system
be transformed into equations of motion for the observer in S′ ?

A first answer to these questions is: the observer in S′ experiences appar-
ent forces. This fact can be demonstrated with a simple example, a uniform
rotation of the system S′ about a common 3 - axis of the two systems.

6.2.1 Simple manifestation of apparent forces

From the point of view of S a point particle is observed, which is at rest in
the x1 -x2 plane (Fig. 6.13a). This experiment is not really exciting, but it is
sufficient for the intended illustration. The observer in S concludes, according
to Newton’s first axiom, that no forces act on the point particle.

From the point of view of S′ the particle moves on a circle (Fig. 6.13b).
A physicist using this system may therefore conclude (again with the first
axiom): the point particle is neither at rest, nor does it move uniformly,
hence it is subjected to a force. As inertial systems are, according to Newton

(a) (b)

 m

 3 =q

 2 q

 1 q

 3 x

 2 x

 1 x

ω

point of view of the
inertial system S

 m

 3 q

 2 q

 1 q

point of view of the
rotating systems S’

Fig. 6.13. Recognising apparent forces

(and Einstein), the proper reference frames for an appraisal of forces, the
force registered by S′ is solely due to the noninertial character of this system
of reference.

The Lagrange formulation, in the Cartesian coordinates xi for the inertial
system and generalised coordinates qμ for the rotating system, is an optimal
basis for the quantitative investigation of these apparent forces. The trans-
formation between the coordinates for the example of a rotation about the
3 - axis can be noted as

x1(t) = q1(t) cosα(t) − q2(t) sinα(t)
x2(t) = q1(t) sinα(t) + q2(t) cosα(t) (6.54)
x3(t) = q3(t) .
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The fact that this set of equations describes a counterclockwise rotation of S′

with respect to S can be checked with

for α = 0 : q1 = x1 q2 = x2 ,
for α = π/2 : q1 = −x2 q2 = x1 .

Further argumentation follows the standard pattern outlined in Chap. 5: the
Lagrangian from the point of view of S is

L =
m

2

∑
i

ẋ2
i − U(x1, x2, x3) .

The Lagrangian in terms of the generalised coordinates (the coordinates of
the rotating system) is obtained with the aid of the transformation (6.55)
and

ẋ1 = q̇1 cosα(t) − q̇2 sinα(t) − q1ω(t) sinα(t) − q2ω(t) cosα(t)
ẋ2 = q̇1 sinα(t) + q̇2 cosα(t) + q1ω(t) cosα(t) − q2ω(t) sinα(t)
ẋ3 = q̇3 .

The quantity ω(t) = α̇(t) is the angular velocity of the rotation. The La-
grangian expressed in terms of the generalised coordinates and velocities is,
after direct calculation, found to be

L =
m

2
{
q̇2
1 + q̇2

2 + q̇2
3 + 2ω(q1q̇2 − q2q̇1) (6.55)

+ω2 (q2
1 + q2

2)
}− U(q1, q2, q3, α) .

The first three terms represent the kinetic energy of the point particle from
the point of view of the rotating coordinate system

TR =
m

2
(
q̇2
1 + q̇2

2 + q̇2
3

)
. (6.56)

The remaining terms in the curly brackets and the potential (energy) U can
be combined in the form of a generalised potential

U∗ = −m

2
{
2ω(q1q̇2 − q2q̇1) + ω2(q2

1 + q2
2)
}

+ U(q1q2q3, α) . (6.57)

The additional terms in (6.57) represent the potential energy due to an (ap-
parent) force. The calculation of the equations of motion

d
dt

(
∂L

∂q̇μ

)
− ∂L

∂qμ
= 0 (μ = 1, 2, 3)

requires the derivatives

∂L

∂q̇1
= mq̇1 − mωq2

∂L

∂q1
= mωq̇2 + mω2q1 − ∂U

∂q1

∂L

∂q̇2
= mq̇2 + mωq1

∂L

∂q2
= −mωq̇1 + mω2q2 − ∂U

∂q2

(and trivial relations for q3). They can be noted in the form
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mq̈1 −mω̇q2 − 2mωq̇2 − mω2q1 +
∂U

∂q1
= 0

mq̈2 +mω̇q1 + 2mωq̇1 − mω2q2 +
∂U

∂q2
= 0

mq̈3 +
∂U

∂q3
= 0 .

(6.58)

Three types of forces can be recognised. The terms mq̈i represent the inertial
forces from the point of view of the system S′ . The active forces correspond
to the partial derivatives of the potential function −∂U/∂qi . The remaining
terms must be interpreted as apparent forces, which arise due to the motion
of the coordinate system with respect to an inertial system. The apparent
forces, which are inspected more closely in section (6.2.2), correct – so to
speak – the equations of motion for the observer in a noninertial system.

6.2.2 General discussion of apparent forces in rotating coordinate
systems

The general discussion (an arbitrary axis of rotation through the common ori-
gin of the two coordinate systems) of the transformation and the equations
of motion is best accomplished with a vectorial formulation. The decomposi-
tion of the position vector with respect to the trihedral of the inertial system
(Fig. 6.14)

S : r(t) = x1(t)e1 + x2(t)e2 + x3(t)e3 (6.59)

 3 ε
 2 ε

 1 ε

 3 e

 2 e

 1 e

r

Fig. 6.14. Basis of the two coordinate systems

is referred to a set of basis vectors, which do (per definition) not depend on
time. The decomposition of the position vector with respect to the rotating
coordinate system is

S′ : r(t) = q1(t)ε1(t) + q2(t)ε2(t) + q3(t)ε3(t) . (6.60)

The unit vectors of the rotating system change with time. Exceptions are e.g.
the example of a rotation about the common 3 - axis with
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ε3(t) = e3 .

The velocity of a point particle from the point of view of the inertial
system S is as usual

v(t) = ṙ(t) = ẋ1(t)e1 + ẋ2(t)e2 + ẋ3e3 .

The corresponding definition of the velocity from the point of view of S′ has
the same form

vR(t) = q̇1(t)ε1(t) + q̇2(t)ε2(t) + q̇3(t)ε3(t) . (6.61)

The rotating observer registers the change of the coordinates qμ with time.
He/she is not yet aware of the fact that the system rotates.

On the other hand, the result is

ṙ(t) = q̇1(t)ε1(t) + q̇2(t)ε2(t) + q̇3(t)ε3(t)
+q1(t)ε̇1(t) + q2(t)ε̇2(t) + q3(t)ε̇3(t)
or

v(t) = vR(t) + Δv(t) , (6.62)

if the full time derivative of the decomposition of the position vector in S′

(6.60) is taken into account. The velocities, that are measured by the respec-
tive observers (v for system S or vR for system S′), are not equal. They differ
by an additional term. This term arises because the frame of reference of the
rotating observer and not only the object under observation move during the
measurement of the velocity (in the time interval between t and t + dt).

The argumentation is simpler for a rotation about the common 3 - axis,
which will be indicated first. The starting point is the transformation between
the basis vectors of the two coordinate systems (compare (2.52) and (2.53))

ε1(t) = e1 cosα(t) + e2 sinα(t)
ε2(t) = −e1 sinα(t) + e2 cosα(t) (6.63)
ε3(t) = e3 .

The time derivative of this transformation

ε̇1 = ω(−e1 sinα + e2 cosα) = ωε2

ε̇2 = −ω(e1 cosα + e2 sinα) = −ωε1

ε̇3 = 0

shows that the additional velocity term has the form

Δv = −ωq2ε1 + ωq1ε2 .

In order to express the additional term in vectorial form a vector for the
angular velocity has to be defined. The definition in this simpler situation is

ω = ωe3 = ωε3
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(the sense of rotation and the corresponding vector of the angular velocity
are related by the right hand rule) so that

Δv = ω × r =

∣∣∣∣∣∣
ε1 ε2 ε3

0 0 ω
q1 q2 q3

∣∣∣∣∣∣ = −q2ωε1 + q1ωε2 .

The transformation between the Cartesian and the generalised velocity com-
ponents for the simpler situation can be summarised as

v(t) = vR(t) + ω(t) × r(t) . (6.64)

This vector equation has to be read in the following fashion: the left hand
side represents the decomposition of the velocity with respect to the system
S . The right hand side has to be decomposed with respect to the system S′ .
Application of the transformation between the basis vectors to the left hand
side gives the right hand side and vice versa. This vectorial relation is, as will
be shown immediately, also valid in the case of a rotation about an arbitrary
axis.

Before the general case is discussed, it is opportune to derive the equa-
tions of motion for the case of a rotation about the common 3 - axis. The
acceleration vectors from the point of view of the two coordinate systems are

S : a(t) = ẍ1(t)e1 + ẍ2(t)e2 + ẍ3(t)e3

S′ : aR(t) = q̈1(t)ε1(t) + q̈2(t)ε2(t) + q̈3(t)ε3(t) .

The equations of motion in the rotating coordinate system can be obtained
from

d vR(t)
d t

= aR(t) + q̇1(t)ε̇1(t) + q̇2(t)ε̇2(t) .

The explicit result, already given in (6.58), can be summarised in the form

maR(t) = −m(ω̇ × r) − 2m(ω × vR) − m(ω × (ω × r)) + Q . (6.65)

The generalised force Q corresponds to the gradient of the (transformed)
potential U in (6.57) with respect to the coordinates qμ

Q =
{
− ∂U

∂q1
, − ∂U

∂q2
, − ∂U

∂q3

}
.

A comparison of the individual terms in (6.65) with those in (6.58) can be
given in a few lines:

ω̇ × r =

∣∣∣∣∣∣
ε1 ε2 ε3

0 0 ω̇
q1 q2 q3

∣∣∣∣∣∣ = (−ω̇q2)ε1 + (ω̇q1)ε2

ω × vR =

∣∣∣∣∣∣
ε1 ε2 ε3

0 0 ω
q̇1 q̇2 q̇3

∣∣∣∣∣∣ = (−ωq̇2)ε1 + (ωq̇1)ε2 (6.66)
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ω × (ω × r) =

∣∣∣∣∣∣
ε1 ε2 ε3

0 0 ω
−ωq2 ωq1 0

∣∣∣∣∣∣ = (−ω2q1)ε1 + (−ω2q2)ε2 .

It turns out, that (6.65) is also valid in the case of a general rotation.
Three of the terms in (6.65) correspond to apparent forces. The first term,

which only occurs if the rotation is accelerated, does not carry a name

F ω̇ = −m(ω̇ × r) . (6.67)

The term, which depends on the velocity of the point particle registered in
the rotating frame, is called the Coriolis force

F C = −2m(ω × vR) . (6.68)

The term with the double cross product is the centrifugal force

F Z = −m(ω × (ω × r)) . (6.69)

The demonstration of the fact that the same result (in vector form) can
be obtained with the Lagrangian formulation in the general case requires
the use of a representation of a rotation in three space dimensions (compare
Chap. 6.3.5). The corresponding calculation can be carried out but it is quite
lengthy. It cannot be avoided, if the rotation of rigid bodies (see Chap. 6.3) is
discussed. It is, fortunately, possible to shorten the discussion in the present
context by appealing directly to the vectorial formulation. Any vector A
can be decomposed with respect to the two coordinate systems (inertial and
rotating)

A(t) = a1(t)e1 + a2(t)e2 + a3(t)e3

= A1(t)ε1(t) + A2(t)ε2(t) + A3(t)ε3(t) .

The time derivative is, as discussed above,

Ȧ(t) = ȧ1(t)e1 + ȧ2(t)e2 + ȧ3(t)e3

= Ȧ1(t)ε1(t) + Ȧ2(t)ε2(t) + Ȧ3(t)ε3(t)
+ A1(t)ε̇1(t) + A2(t)ε̇2(t) + A3(t)ε̇3(t) .

It is necessary, to find a general expression for the vectors ε̇μ . The vector
of the angular velocity ω is used as a marker for this purpose. This vector
indicates the axis of rotation, its absolute value is the magnitude of the
angular velocity. The unit vectors εμ move on cones with the opening angle
2Θμ about this axis (Fig. 6.15).

The following elementary consideration leads to a relation for the time
derivative of the vectors εμ : The end point of the vector εμ(t) describes a
circle about the ω - axis (Fig. 6.15a). The magnitude of the orbital velocity
(see (2.56), p. 55) of the end point is |ε̇μ(t)| = ρω(t) . The radius vector ρ ,
which is perpendicular to the ω - axis, has the length ρ = sin θμ, as εμ(t) is a
unit vector (Fig. 6.15b). The direction of the vector ω×εμ is according to the
right hand rule identical with the direction of the vector ε̇μ(t) (Fig. 6.15b).
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(a) (b)

 ν θ

 μ μ  (t) ε− d (t+  t) ε
 μ  d (t+  t) ε

 μ (t) ε

 ω

overview

 ω

 r  μ x ε ω

 μ (t) ε

details

Fig. 6.15. The time derivative of the vectors εi

As the absolute value of the cross product (sin θμ ω(t)) is also identical with
the magnitude of the vector ε̇μ(t), the relation

ε̇μ = ω × εμ

must be valid in general. This result allows the formulation of a general
relation between the time derivative of a vector A(t) from the point of view
of the two coordinate systems

d
dt

A

∣∣∣∣
I

=
d
dt

A

∣∣∣∣
R

+ ω × A . (6.70)

This relation is valid for every vector. For this reason it is often abbreviated
with the short hand

d
dt

∣∣∣∣
I

=
d
dt

∣∣∣∣
R

+ ω× , (6.71)

where it is understood that this relation can be applied to any vector. Again
the left hand side refers to the decomposition of any vector in the inertial
system, the right hand side to the decomposition in the rotating system.

The following points can be noted in particular:

(1) The velocity transformation (6.64) is valid in general.
(2) The angular acceleration is the same for the two coordinate systems

ω̇|I = ω̇|R = ω̇ . (6.72)

(3) Differentiation of the velocity transformation yields the relation between
the acceleration in the two reference systems

d
dt

(
vI

)
I
=

d
dt

(
vR + (ω × r)

)
R

+ ω × (
vR + (ω × r)

)
R

aI = aR +
[
ω̇ × r + ω × vR + ω × vR + ω × (ω × r)

]
R

. (6.73)

This relation, which is indexed explicitly for clarity, has already been
obtained for the simpler example.

These general results will be illustrated by two additional, transparent
examples demonstrating the role of the apparent forces.
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6.2.2.1 Examples for apparent, noninertial forces. In the first example
the relative motion of the reference systems is once more a uniform rotation
(ω̇ = 0) about the common 3 - axis

ω = ωe3 = ωε3 .

A mass point, as seen by the inertial system (Fig. 6.16), rotates uniformly
on a circle in the x1 -x2 plane. This rotation can be described by a vectorial

 r

 I ω

 ω

 3 x

 2 x

 1 x
Fig. 6.16. Noninertial reference systems I: circular
motion in S

angular velocity ωI = ωIe3 . The relation between the orbital velocity and
the angular velocity is

vI = ωI × r

(as ωI ⊥ r in this example). This circular motion is due to a central force F ,
for which the stability condition

F = m ωI × (ωI × r)

(the mass multiplied by the central acceleration equals the acting force) ap-
plies.

The following observations describes the point of view of the rotating
coordinate system:

• The velocity of the mass point is

vR = vI − ω × r = (ωI − ω) × r .

The orbital velocity from the point of view of the rotating frame depends on
the difference of the two angular velocities. The mass point is at rest from
the point of view of the rotating system, if the mass and the coordinate
system rotate in the same sense and if the angular velocities have the same
magnitude ω = ωI . The velocity is vR = −ω × r , if the mass point is at
rest in the inertial system ωI = 0 . From the point of view of S′ the mass
point moves, as if it had the angular velocity −ω .

• The forces on the mass point as observed in the rotating system are

F R = F + F C + F Z

= mωI × (ωI × r) − 2mω × ((ωI − ω) × r) − mω × (ω × r) .

This expression can be condensed in the form
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F R = m(ωI − ω) × [(ωI − ω) × r] ,

if the two angular velocities are, as explicitly assumed, proportional to
each other ωI = a ω (same or opposite direction). The rotating observer
observes a circular motion, which is determined by the difference of the
angular velocities. The centrifugal force and the Coriolis force combine to
act as an apparent central force.

The same relative motion of the two reference systems is assumed in the
next example (Fig. 6.17). The mass point moves, however, with a constant
velocity along the x1 - axis from the point of view of the inertial system. The

 v

 ω

 3 x

 2 x

 1 x
Fig. 6.17. Noninertial reference systems II: straight line mo-
tion in S

question to be answered is: how does the mass point move from the point of
view of the rotating observer? The question will, this time, be answered by
an explicit solution of the equations of motion in the rotating system. The
equations of motion (6.65) for the coordinates q1 and q2 are

q̈1 = 2ωq̇2 + ω2q1 (6.74)
q̈2 = −2ωq̇1 + ω2q2 . (6.75)

The coordinate q3 can be ignored. As there are no active forces in the inertial
system, only the Coriolis and the centrifugal forces contribute in the rotat-
ing system. The initial conditions for the motion as seen in this system are
q1(0) = q2(0) = 0, the mass point starts at the origin, and q̇1(0) = v, q̇2(0) = 0,
the mass moves initially in the q1 - direction which coincides at t = 0 with
the x1 - direction.

The two differential equations are coupled. In order to decoupled them,
the first equation is differentiated twice, the second equation once with re-
spect to time

....
q1 = 2ω

...
q2 +ω2q̈1 (6.76)

...
q2 = −2ωq̈1 + ω2q̇2 . (6.77)

The velocity q̇2 can be eliminated from (6.77) with (6.74)

q̇2 =
1
2ω

q̈1 − ω

2
q1 .

The result is
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...
q2 = −2ωq̈1 +

ω

2
q̈1 − ω3

2
q1 = −3

2
ωq̈1 − ω3

2
q1 .

Insertion into (6.76) leads to
....
q1 +2ω2q̈1 + ω4q1 = 0 . (6.78)

The ansatz q1 = exp(λt) for the solution of this homogeneous linear differen-
tial equation of fourth order with constant coefficients yields the characteristic
equation

λ4 + 2ω2λ2 + ω4 = 0 .

This equation has two double roots

λ1 = λ2 = iω λ3 = λ4 = −iω .

The general solution is therefore

q1(t) = (C1 + C2t) eiωt +(C3 + C4t) e−iωt . (6.79)

The solution of a differential equation of fourth order contains, as expected,
four integration constants. The initial conditions q1(0) = 0 and q̇1(0) = v lead
to two additional statements, as q̈1 as well as

...
q1 are determined by derivatives

of lower order according to (6.74) and (6.75)

q̈1 = 2ωq̇2 + ω2q1 −→ q̈1(0) = 0
...
q1 = 2ωq̈2 + ω2q̇1 = −3ω2q̇1 + 2ω2q2 −→ ...

q1 (0) = −3ω2v .

The implementation of the initial conditions is slightly tedious. The solution
has to be differentiated three times and the resulting system of linear equa-
tions for the coefficients C1 . . . C4 at time t = 0 has to be solved. The final
result (it must be real!) of this calculation is (see D.tail 6.3)

q1(t) = vt cosωt .

The calculation of q2(t) involves a suitable combination of the basic equations
(6.74) and (6.75)

q2(t) =
1
ω2

q̈2(t) +
2
ω

q̇1(t)

q̈2(t) =
1
2ω

...
q1 −ω

2
q̇1(t)

⎫⎪⎬
⎪⎭ → q2 =

1
2ω3

...
q1 +

3
2

1
ω

q̇1 = −vt sinωt .

The trajectory, which is described by the two equations, is a spiral. The spiral
is traversed as indicated in Fig. 6.18. The separation from the origin grows,
as might have been expected, linearly with time.

The result, calculated with some labour, can be obtained in a much sim-
pler way. The position vector in the inertial system with the initial conditions
stated is

r(t) = vte1 .

The vector e1 transforms in the present example as
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 2 q

 1 q
Fig. 6.18. Noninertial reference systems II: spiral mo-
tion in S′

e1 = ε1(t) cosωt − ε2(t) sinωt

so that the result from the point of view of S′

r(t) = (vt cosωt)ε1 + (−vt sinωt)ε2 (6.80)

follows directly.
The conclusion that can be extracted from the last example is: decide in

all cases beforehand, whether it is simpler to solve the equation of motion in
the rotating system or to transform the solution in the inertial system into
the rotating frame. The second option is by far simpler in the last example.

6.2.3 Apparent forces and the rotating earth

The discussion of apparent forces on the rotating earth is really quite com-
plicated, if the aim is a very accurate description of the situation. The earth
undergoes a complicated tumbling motion which is composed of three indi-
vidual rotations:

(1) Rotation of the earth about the north-south axis (ω).
(2) Rotation of the earth around the sun (ωES). The facts that the rotational

axis of the earth is inclined with respect to the plane of the orbit around
the sun (declination) and that the motion of the earth around the sun is
accelerated have to be included.

(3) Rotation of the complete planetary system about the centre of the spiral
nebula milky way (ωS).

The effect of rotations (2) and (3) can, however, quite safely be neglected in
comparison with the effects of rotation (1). The angular velocity of the first
rotation is

ω =
2π
day

=
2π

24 · 3600
s−1 = 7.272 · 10−5 s−1 ω̇ ≈ 0 .

This number is not terribly impressive. On the other hand, a rather re-
spectable velocity of

vÄq = RE ω = (6.38 · 103 km) ω ≈ 1670
km
h

is found for the velocity of an object resting on the equator. The rotation of
the earth is from west to the east (the sun rises in the east), the vector ω
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points to the north. The rotation is considered to be uniform, as it can be
assumed, that the relation ω̇ = 0 is satisfied to a good approximation.

From the point of view of an earth-bound system the following forces
(Fig. 6.19) act on a mass m , which is at rest on the surface of the earth:

 G F  z Fϕ

ϕ

ω

Fig. 6.19. Forces on a mass resting on the surface of
the earth

(1) The gravitation F G = −mg , which is directed towards the centre of the
earth.

(2) The centrifugal force F Z = −mω × (ω × r) |r| = RE .

The vector F Z is parallel to the equatorial plane and directed outward. The
magnitude of this vector depends on the geographical latitude6 ϕ

FZ = mREω2 cosϕ .

This dependence follows from

|ω × r| = REω sin(90◦ − ϕ) = REω cosϕ

and the fact that the angle between ω×r and ω equals 90◦ . With the values
for RE and ω , the centrifugal acceleration is found to be

aZ = 3.4 cosϕ
cm
s2

.

The centrifugal acceleration is relatively weak in comparison with the gravi-
tational acceleration

aG = 980
cm
s2

.

It amounts only to about 0.35 % of the gravitation, but its effects can nonethe-
less be observed. The total acceleration in the vertical direction is

geff = g + aZV = −(g − ω2RE cos2 ϕ)er ,

where F Z has been decomposed into components in the direction of and a
component perpendicular to the gravitational force (Fig. 6.19). The accele-
ration due to gravity is decreased slightly and depends on the geographical
latitude. The reduction vanishes at the poles. The magnitude of the horizontal
components is
6 The equator has the latitude 0◦ , the north pole +90◦ = π/2 , the south pole
−90◦ .
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aZH = ω2RE cosϕ sinϕ .

The direction is towards the south on the northern hemisphere and to-
wards the north on the southern hemisphere. The dependence on the lati-
tude (northern hemisphere) is illustrated in Fig. 6.20. Objects should start

 ZH a

 0 90 0 45
 ϕ

 0

Fig. 6.20. Horizontal component of the centrifugal ac-
celeration on the northern hemisphere

to move towards the equator under the influence of this component. This is
not observed. One reason (besides friction) is the following: the earth is not
a sphere but a geoid. The earth possesses plastic properties and has, in the
course of its existence, adjusted to the centrifugal forces. The distribution of
mass on the earth is approximately such, that the vector

g − ω × (ω × r)

is always perpendicular to a plane tangential to the surface of the earth.

6.2.3.1 Free fall on the rotating earth. The discussion of free fall from
the point of view of the rotating earth has to include the apparent forces.
An object, that falls towards the earth from a height h , experiences a de-
viation from the vertical due to the Coriolis force. This deviation will now
be determined. A local coordinate system is (as in the actual experiment)
used for this purpose (Fig. 6.21). The coordinate system is located on the

 90-ϕ

 1
 q

 3
 q

ω

ϕ

Fig. 6.21. Local trihedron, schematic

surface of the geoid in such a fashion, that the q1 - direction corresponds to
the north-south tangent, the q2 - direction to the west-east tangent and the
q3 - direction to the vertical.

The equations of motion for the free fall on the rotating earth with ω̇ = 0
are
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maR = mgeff − 2m(ω × vR) . (6.81)

Centrifugal effects are included in geff . The vectors have to be decomposed
into components with respect to the local system. It can safely be assumed
that the earth possesses a spherical shape for this purpose. The decomposition
of the angular velocity in dependence of the latitude ϕ is

ω = −ω cosϕ ε1 + ω sinϕ ε3 , (6.82)

the relevant factor of the Coriolis force

ω × vR =

∣∣∣∣∣∣
ε1 ε2 ε3

−ω cosϕ 0 ω sinϕ
q̇1 q̇2 q̇3

∣∣∣∣∣∣
= (−ωq̇2 sinϕ) ε1

+(ωq̇1 sinϕ + ωq̇3 cosϕ) ε2 + (−ωq̇2 cosϕ) ε3 .

The equations of motion in terms of components are therefore

q̈1 = 2ωq̇2 sinϕ
q̈2 = −2ωq̇1 sinϕ −2ωq̇3 cosϕ
q̈3 = 2ωq̇2 cosϕ −geff .

(6.83)

The obvious symmetry of this system of equations is no accident but a con-
sequence of the energy principle. The relation

3∑
i=1

q̇iq̈i + geff q̇3 = 0

is obtained if the i-th equation is multiplied with q̇i and all three expressions
are added. This result can be rewritten as

d
dt

(∑
i

1
2
q̇2
i + geffq3

)
=

1
m

[
d
dt

(T + Ueff)
]

= 0 . (6.84)

The Coriolis force does not do any work, as it is perpendicular to the instan-
taneous direction of motion for all times.

An approximate solution of the differential equations (6.83) for the fall
on the rotating earth can be found with the following argument. It can be
expected because of the small value of ω, that the deviations from the vertical
are small. It is therefore possible to neglect q̇1 and q̇2 on the right hand side of
the equations of motion in comparison with q̇3 . The approximate equations
of motion are therefore

q̈1 = 0
q̈2 = −2ωq̇3 cosϕ (6.85)
q̈3 = −geff .

A ’standard free fall experiment’ is characterised by the initial conditions
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q1(0) = q2(0) = 0 q3(0) = h

q̇i(0) = 0 (i = 1, 2, 3) .

The object is initially at the height h above the surface of the earth and at
rest with respect to the rotating earth. The solutions of the first and the third
equations of the system (6.85) (for the initial conditions above) are

q1(t) = 0 q3(t) = h − 1
2
gefft2 . (6.86)

The solution for q3 can be inserted into the second differential equation. The
result is (again for the initial conditions stated)

q2 =
1
3
ωt3geff cosϕ . (6.87)

There exists a deviation from the vertical in the easterly direction on the
northern as well as the southern hemisphere (−π/2 ≤ ϕ ≤ π/2). Insertion of
definite values as e.g. h = 100m and geff = 9.8 m/s2 into the equation for
q3 , gives

q3(T ) = 0 = 100 − 4.9T 2 ,

that is a time of T = 4.52 s for the duration of the fall. The easterly deviation
at a geographical latitude ϕ of 45◦ is

q2(T ) ≈ 1.6 cm

in this case. The deviation is small, but it can be measured. The rotation of
the earth can be verified by this experiment.

The steps for an exact solution of the differential equation (6.83) are given
in D.tail 6.4 (part 1). The solution with the initial conditions for the free
fall from rest is

q1(t) =
ABg

8ω4

{
(ωt)2 +

1
2
(cos 2ωt − 1)

}

q2(t) =
Bg

4ω3

{
(ωt) − 1

2
sin 2ωt

}
(6.88)

q3(t) = h − 1
2
gt2 +

B2g

8ω4

{
(ωt)2 +

1
2
(cos 2ωt − 1)

}
.

The quantities A and B stand for

A = 2ω sinϕ B = 2ω cosϕ . (6.89)

The functions sinωt and cosωt can be expanded in a power series. The
approximation discussed beforehand is obtained in lowest order. Inclusion
of additional terms of the expansion allows the derivation of more accu-
rate approximations. In addition to the easterly deviation a southerly devi-
ation is found on the northern hemisphere (0 < ϕ < π/2). This deviation
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is 1.8 10−4 cm at ϕ = 45◦ for an initial height of h = 100m . It can not be
measured in an actual experiment.

The occurrence of an easterly deviation can be understood in a simple,
qualitative fashion: the orbital velocity of the point of impact from the point
of view of an inertial system is vi = RE ω cosϕ . The orbital velocity of the
mass at height h is on the other hand vm = (RE + h)ω cosϕ . The object
about to fall has a larger velocity in the easterly direction as the point of
impact. For this reason it will hit the earth east of the starting position.

6.2.3.2 Projectile motion on the rotating earth and related effects.
A set of initial condition as

q1(0) = q2(0) = q3(0) = 0

q̇1(0) = v1 q̇2(0) = 0 q̇3(0) = v3 > 0

describes projectile motion on the rotating earth with an initial velocity in the
north-south (v1 > 0) or south-north (v1 < 0) direction. The exact solution
of the differential equations (6.83) with these initial conditions is (see
Probl. 6.4)

q1(t) = v1t +
ABg

8ω4

{
(ωt)2 +

1
2
(cos 2ωt − 1)

}

+
A

4ω3
(Av1 + Bv3)

{
1
2

sin 2ωt − (ωt)
}

q2(t) =
Bg

4ω3

{
(ωt) − 1

2
sin 2ωt

}
(6.90)

+
1

4ω2
(Av1 + Bv3) {cos 2ωt − 1}

q3(t) = v3t − 1
2
gt2 +

B2g

8ω4

{
(ωt)2 +

1
2
(cos 2ωt − 1)

}

+
B

4ω3
(Av1 + Bv3)

{
1
2

sin 2ωt − (ωt)
}

.

The parameters A and B are as before

A = 2ω sinϕ B = 2ω cosϕ .

An easterly or westerly deviation can also be found in this case. Initial ve-
locities of v1 = 500 m/s in a northerly direction and a vertical component of
v3 = 100 m/s lead to a projectile range of about 10 km. The target in the
north is missed by about by 15 m for this range.

Effects of the Coriolis force can in addition be observed in the following
phenomena:
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• The formation of cyclones.
• The course of the gulf stream.

The sense of rotation in the first two examples is due to the apparent forces.
Cyclones in the northern hemisphere rotate, as does the gulf stream, in the
sense of the clock.

• The course of rivers. A deviation towards the east can (cum grano salis)
be observed for the Siberian rivers flowing to the north, as there are few
geographical impediments acting against the Coriolis forces in the Northern
Siberian plane.

• The formation of vortices, e.g. in connection with the famous ’bath tub
problem’. The possibility of a different sense of rotation for the formation
of vortices during the draining of bath tubs on the northern or the southern
hemisphere has been discussed heatedly for some time. So far this question
could not be resolved by experiment due to ’technical difficulties’.

• The Foucault pendulum. The Foucault pendulum is a mathematical pen-
dulum, which is observed during a sufficiently long period on the rotating
earth. It is perfectly suited to demonstrate the effects of the Coriolis force
or in other words the rotation of the earth.

6.2.3.3 The Foucault pendulum. The appropriate equations of motion
(and the arrangement of the local coordinate system) correspond to the equa-
tions (6.83) for the free fall on the rotating earth. The incorporation of the
constraint of a fixed length of the rod or string of the pendulum(

q2
1 + q2

2 + q2
3 − l2

)
= 0

requires the formulation of equations of motion of the form Lagrange I

q̈1 = 2ωq̇2 sinϕ +λq1

q̈2 = −2ωq̇1 sinϕ −2ωq̇3 cosϕ +λq2

q̈3 = 2ωq̇2 cosϕ −geff +λq3 .
(6.91)

Small oscillations of the pendulum can be characterised by
q1

l
,
q2

l

 1

provided the length of the string is sufficiently large. The constraint

q3 = ±l

[
1 −

(q1

l

)2

−
(q2

l

)2
]1/2

can be expanded in a binomial series in this case

q3 = ±l

(
1 − 1

2

[(q1

l

)2

−
(q2

l

)2
]

+ . . .

)
.

The position of the pendulum is characterised by q3 = −l (note the orienta-
tion of the q3 - axis) in lowest approximation. The quantities q1/l and q2/l
can be regarded as quantities of first order. The dominant contribution in the
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third equation of (6.91) are the gravity (use geff ≡ g) and the constraining
force. The derivative q̈3 is of second, the Coriolis force of first order. The
parameter λ = −(g/l) is of first order, so that the equations of motion can
be approximated consistently to first order by

q̈1 = 2ωq̇2 sinϕ − g

l
q1

q̈2 = − 2ωq̇1 sinϕ − g

l
q2 .

(6.92)

The term with q̇3 in the equation for q2 can be neglected as being of higher
order.

It is useful to introduce (see Math.Chap. 7) the complex variable
u = q1 + i q2 (and the abbreviation R = ω sinϕ) for the discussion of the
system of equations (6.92). The resulting linear differential equation with
constant coefficients

ü + 2 iR u̇ +
g

l
u = 0 (6.93)

can be solved with the standard ansatz. The roots of the characteristic equa-
tion are

α1,2 = −R ±
√

R2 + (g/l) ,

so that the general solution can be noted as

u(t) = C1ei α1 t + C2ei α2 t . (6.94)

The pendulum was initially displaced towards the South

q1(t = 0) = C (C > 0) q2(t = 0) = 0

and set into motion without a push

q̇1(0) = q̇2(0) = 0

in the original Foucault experiment in 1851. These initial conditions yield the
equations

C1 + C2 = C α1 C1 + α2 C2 = 0

for the constants of integration. The solution of this set of linear equations is

C1 =
−Cα2

(α1 − α2)
=

C

2

(
1 +

R√
R2 + (g/l)

)

C2 =
Cα1

(α1 − α2)
=

C

2

(
1 − R√

R2 + (g/l)

)
.

The pendulum executes, from the point of view of the rotating earth,
for these initial condition a pattern in the form of a rosette (Fig. 6.22). In
order to demonstrate the correctness of this statement, the following steps
are required: calculate the time derivative of the function u(t)
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u̇ = iα1C1

(
ei α1 t − ei α2 t

)
=

C g

l
√

R2 + (g/l)
e−i R t sin

([
R2 +

(g

l

)]1/2

t

)
. (6.95)

This derivative has the value zero, if the argument of the sine function is a
multiple of π, that is if the relation[

R2 + (g/l)
]1/2

t = kπ (k = 0,±1,±2, . . .)

is satisfied. With the derivative of the complex function, the derivatives of the
coordinates q1 and q2 have the value zero as well. This feature is responsible
for the appearance of spikes in the trajectory at the times

τk =
kπ√

R2 + (g/l)
(k = 0,±1,±2, . . .) .

These times correspond exactly to the turning points of the standard mathe-
matical pendulum in harmonic approximation, if the Coriolis force is absent,
that is if R = 0.

In the time interval from 0 to τ1 the pendulum moves (from the point of
view of the rotating earth) not exactly towards north, but reaches a point
which is characterised by

u(τ1) = C1e−i(R τ1−π) + C2e−i(R τ1+π) = −Ce−iR τ1 , (6.96)

or respectively by (Fig. 6.22a)

q1(τ1) = −C cos(Rτ1) q2(τ1) = C sin(Rτ1) .

(a) (b) (c)

 2 τ

 1 τ

 2 q

 1 q

turning points for
one period

 2 q

 1 q

a rosette pattern

 o 30

 o 45

 o 60

 o 90

 1 τ

 2 q

 1 q

first period for
ϕ = 30◦, 45◦, 60◦, 90◦

Fig. 6.22. The Foucault pendulum

The first turning point of the pendulum is found in the North-East (check
this against the direction of the Coriolis force) . This point is rotated by the
angle

Δφ1 = ωτ1 sinϕ
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(it depends on the geographical latitude ϕ) against the north-south direction.
In general the turning points are described by

q1(τk) = (−1)kC cos(Rτk) q2(τk) = (−1)k+1C sin(Rτk) .

The second turning point (with k = 2) is found in the south-westerly quad-
rant. This rotation of the plane of oscillation, which continues in the pattern
indicated (Fig. 6.22b), is solely due to the action of the Coriolis force (as it
vanishes for R = 0). The experimental verification of the rosette pattern7

is another proof of the rotation of the earth (about the north-south axis).
The variation of the rotation of the plane of oscillation with the geographi-
cal latitude can be gleaned from Fig. 6.22c, which shows the first period of
oscillation for values of ϕ of 30◦, 45◦, 60◦, 90◦ (from left to right).

The last section of the ’Application of the Lagrange formalism’ is devoted
to the discussion of the motion of rigid bodies. The main interest will be
centred on the development of the theory of spinning tops. It will, however,
only be possible to address the simplest of the many interesting aspects of
this theory.

6.3 The motion of rigid bodies

The description of the motion of extended objects is more complicated than
the description of the motion of point particles. A simplification is encoun-
tered if the body is rigid. A body is called rigid, if it is composed of a set of
point particles for which the mutual distances do not change with time.

A rigid body possesses (with the exception of a pair of dumb-bells) six
degrees of freedom. Three correspond to the translation of an arbitrary point
of reference in the body (usually the centre of gravity) and three to a rotation
of the body itself. The mathematical description of the rotational motion de-
mands a certain amount of effort. This motion can be characterised (as shown
in Chap. 6.3.2) by the components of the angular velocity (ω1, ω2, ω3) re-
ferred to a body-fixed frame of reference. The kinetic energy of the rotational
motion takes the form

Trot =
1
2

3∑
μ,ν=1

Iμν ωμ ων .

The inertial response of the body with respect to rotations is determined by
a 3 × 3 matrix

Î = [Iμν ] .

Details concerning the topic ’inertial matrix’ are presented in Chap. 6.3.2.
7 To be viewed e.g. in the Deutsche Museum in Munich. D.tail 6.4 (part 2)

contains an applet for the illustration of the time development of the Foucault
pendulum.
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The fact that the inertial response is determined by a matrix (and not by
a scalar as in the case of translations) is the reason why the relation between
angular momentum and angular velocity has the form of a matrix equation
(Chap. 6.3.3). As a consequence, a more complex pattern of motion has to be
expected even in relatively simple situations (like the motion of a force-free
symmetric top).

The three components of the angular velocity ωμ do not correspond di-
rectly to a set of generalised velocities. The connection with the actual gener-
alised coordinates used for the description of the rotational motion (normally
the Euler angles) is, for this reason, much more involved. The resulting equa-
tions of motion (Chap. 6.3.4) are not easily applied. A small selection of
examples will nonetheless be discussed after the formulation of the equations
which describe the motion of a spinning top (Chap. 6.3.5).

6.3.1 Preliminaries

The characterisation of a rigid body given above implies that absolutely rigid
bodies are not found in nature. This concept is, however, an excellent approxi-
mation in many circumstances. It will be used throughout this section.

Simple counting is sufficient to demonstrate that the number of degrees
of freedom of a rigid body is always 6, provided the number of mass points
making up the rigid body is equal to or larger than 3 (Fig. 6.23). A body with

 N = 5 N = 4 N = 3 N = 2

Fig. 6.23. Simple rigid bodies

two mass points (N = 2) is rigid, if the masses are connected by one ’rigid
rod’. The number of degrees of freedom NF is restricted by one constraint
from six to five. For a rigid body consisting of three respectively of four mass
points, three (triangle) respectively six (tetrahedron) rigid rods are needed in
order to fix the relative position of the constituents. The superficial number
of degrees of freedom NF = 3 × N is reduced in both cases to NF = 6.
The situation can be characterised from this point on as follows: for each
additional mass three additional constraints are needed, in order to fix the
position of the additional point particle with respect to the original body. An
additional mass could e.g. vibrate with respect to the remaining body if only
two additional constraints were provided. It would not be rigid. The three
new degrees of freedom are immediately ’frozen’ by three constraints, so that
the number of degrees of freedom is always

NF = 6 for all N ≥ 3 .
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The assembly of the relevant equations (of motion) is achieved with the fol-
lowing steps:

• Begin with the Lagrangian for a system of N mass points with (3N − 6)
constraints. Choose nontrivial, generalised coordinates.

• Express the Lagrangian as a function of the generalised coordinates and
derive the Lagrangian equations of motion.

• In order to model realistic objects with a continuous mass distribution
(compare Chap. 3.2.4.1, p. 127) an additional step is required: make the
transition from the discrete to a continuous mass distribution.

The Lagrangian for a system of N mass points is

L =
1
2

∑
i

miv
2
i −

∑
i

U(ri) − 1
2

∑
i �=k

V (|ri − rk|) . (6.97)

The internal potential energy

V =
1
2

∑
i,k

Vi,k = const.

can be neglected for the discussion of a rigid body. This energy is constant as
long as it depends only on the separation of the mass points and hence is not
of interest. The discussion can be restricted to the Lagrangian L = T − U .

The choice of the (3N − 6) ignorable coordinates is trivial

q7 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − l212 = 0

...
...

...
q3N = (xN − xN−1)2 + . . . + (zN − zN−1)2 − l2N−1,N = 0 .

The quantities lik represent the fixed separation of the (3N − 6) pairs of
masses. A general assertion for the remaining six nontrivial coordinates is
expressed by the theorem of Chasles:

The general motion of a rigid body is composed of
a translation and a rotation of the whole system.

It is sufficient for an illustration of this theorem to consider three points of
a rigid body (Fig. 6.24). The three points can be moved from an initial to a
final situation by a rotation of the body about a suitable axis followed by a
translation. The sequence of these steps can be interchanged.

6.3.2 The kinetic energy of rigid bodies

A suitable point of reference of the body has to be chosen for a description
of the translation. The centre of gravity is well suited for this purpose
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(a) (b) (c)

 3 m

 2 m 1 m

starting position
 3 m

 2 m

 1 m

 3 m

 2 m 1 m

rotation
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 1 m

 3 m

 2 m

 1 m

translation

Fig. 6.24. Illustration of the theorem of Chasles

R =
1
M

N∑
i=1

miri M =
∑

i

mi .

The three coordinates of the centre of gravity can serve as three of the six
generalised coordinates. The description of the rotation is more complicated.
The generalised coordinates for the description of the rotation will only be
chosen in Chap. 6.3.4. The motion of the rigid body is in the meantime
characterised by the choice and the manipulation of two coordinate systems.

6.3.2.1 The coordinate systems. Coordinate system 1 is an inertial sys-
tem. This space-fixed coordinate system is spanned by the coordinates
(x, y, z). It describes the point of view of an external observer. Coordinate
system 2 with the coordinates (x1, x2, x3) is the body fixed coordinate
system. This is firmly attached to the body. The centre of mass can be
chosen as the origin of this system. This choice is not necessary, it does, how-
ever, simplify the discussion (as will be shown). The body-fixed system is, in
general, not an inertial system.

The position of each of the N masses of the body is

ri(t) = RCM (t) + ri,CM (t) . (6.98)

The position of the i -th mass point from the point of view of the space-fixed
frame ri is equal to the sum of the position of the centre of mass RCM and
the position of the mass with respect to the centre of mass ri,CM (Fig. 6.25).
The velocities of the individual point particles can, in accordance with the

 z

 y

 x

 i CM r

 i r
CM R

Fig. 6.25. Position of a mass element from the point
of view of the body-fixed, centre of mass system
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theorem of Chasles, be specified as

vi(t) = V CM (t) + ω(t) × ri,CM (t) V CM = ṘCM . (6.99)

The velocity of each mass from the point of view of the space-fixed system
equals the velocity of the centre of mass plus a rotational contribution. The
following independent argument can be used in order to justify this relation:
place yourself into the centre of mass and attach an inertial system (I). The
velocity of the i -th mass from the point of view of I is (compare (6.64),
p. 299)

v
(I)
i = v

(B)
i + ω × ri,CM .

The velocity v
(B)
i is the velocity of the mass as seen in the body-fixed frame.

It is, however, zero as the body moves with the frame of reference v
(B)
i = 0 .

Add now the possible translation of the centre of mass and find the relation
(6.99)

vi(t) = V CM (t) + v
(I)
i (t) = V CM (t) + ω(t) × ri,CM .

Note that the vector ri,CM , which is defined with respect to the rotating
frame, does not depend on time. It it the instantaneous axis of rotation (de-
scribed by the vector ω(t)), which changes its direction (and its magnitude)
with time.

6.3.2.2 The kinetic energy of rotational motion in a body-fixed
frame referred to the centre of mass. The expression for the veloc-
ity of the i -th mass can be used to represent the kinetic energy of a rigid
body in terms of the velocity of the centre of mass and the angular velocity
after this choice of the frames of reference. The starting point is

T =
1
2

∑
i

miv
2
i

=
1
2

∑
i

mi

{
V 2

CM + 2V CM · (ω × ri,CM )

+(ω × ri,CM ) · (ω × ri,CM )} . (6.100)

The first term describes the kinetic energy of the translation

Ttrans =
M

2
V 2

CM . (6.101)

The second term vanishes if the body-fixed system is referred to the centre of
mass, because the definition of the centre of mass as the origin of this system
implies∑

i

miri,CM = 0 .

The third term, which will finally be interpreted as the kinetic energy of
the rotational motion, requires a more extensive discussion. In a first step
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a standard formula for the scalar product of two cross products (see
Math.Chap. 3.1.2) has to be invoked

(a × b) · (a × b) = a2b2 − (a · b)2

in order to write

Trot =
1
2

∑
i

mi

{
r2

i,CMω2 − (ri,CM · ω)2
}

.

A direct evaluation is possible with the decomposition of the two vectors ω
and ri,CM with respect to the body-fixed system.

Trot =
1
2

∑
i

mi

[
(x2

1i + x2
2i + x2

3i)(ω
2
1 + ω2

2 + ω2
3)

−(x1iω1 + x2iω2 + x3iω3)2
]

.

The expression for the rotational kinetic energy is in detail

Trot =
1
2

{[∑
i

mi(x2i + x3i)2
]

ω2
1 +

[
−
∑

i

mix1ix2i

]
ω1ω2

+

[
−
∑

i

mix1ix3i

]
ω1ω3 +

[
−
∑

i

mix1ix2i

]
ω1ω2

+

[∑
i

mi(x1i + x3i)2
]

ω2
2 +

[
−
∑

i

mix2ix3i

]
ω2ω3

+

[
−
∑

i

mix1ix3i

]
ω1ω3 +

[
−
∑

i

mix2ix3i

]
ω2ω3

+

[∑
i

mi(x1i + x2i)2
]

ω2
3

}

if the factors of the individual products of the angular velocities are collected.
These factors are independent of time. They depend only on the geometry
and the mass distribution of the rigid body.

The factors can be interpreted as elements of a 3 × 3 matrix

Iμν =
N∑

i=1

mi

[
δμν

3∑
λ=1

x2
λi − xμixνi

]
(μ, ν = 1, 2, 3) (6.102)

so that the expression for the rotational kinetic energy can be brought into
a more compact form

Trot =
1
2

∑
μν

Iμν ωμ ων .

The matrix elements in (6.102) corresponds in detail to
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I11 =
N∑

i=1

mi(x2
2i + x2

3i) I12 = −
N∑

i=1

mi(x1i x2i) etc.

The complete matrix

Î(CM) ≡ Î =

⎛
⎝ I11 I12 I13

I21 I22 I23

I31 I32 I33

⎞
⎠

B

(6.103)

is called the inertia matrix or the inertia tensor8. The diagonal elements
of the matrix are the moments of inertia with respect to the three axes of the
body-fixed coordinate system. The remaining elements are called centrifugal
moments or alternatively products of inertia. The matrix is symmetric
Iμν = Iνμ . There are six independent quantities, which describes the inertial
response of a rigid body against a change of its rotation.

The total kinetic energy of a rigid body is

T = Ttrans + Trot =
M

2
V 2

CM +
1
2

∑
μν

Iμν ωμ ων . (6.104)

The form of the second term is only valid in a body-fixed system, for which the
centre of mass is the origin. Quantities referred to this coordinate system will
from now on be characterised consistently by Greek indices or be identified
by the subscript B. The rotational contribution can be expressed in a more
compact form using a matrix notation. The definition

ω =

⎛
⎝ω1

ω2

ω3

⎞
⎠

B

and the matrix (6.103) allows to write

Trot =
1
2
ωT Î ω

=
1
2
(ω1, ω2, ω3)B

⎛
⎜⎝

I11 . . . I13

...
. . .

...
I31 . . . I33

⎞
⎟⎠

B

⎛
⎝ω1

ω2

ω3

⎞
⎠

B

.

(6.105)

6.3.2.3 Body-fixed systems with an arbitrary origin. The relation
among the velocities (6.99) is still valid if an arbitrary point of the body-fixed
system is chosen as the origin instead of the centre of mass. The relation for
a point O (Fig. 6.26a) would read

vi = V O + (ω × ri,O) . (6.106)
8 The name tensor refers to the properties of Î with respect to linear transforma-

tion, as indicated briefly on p. 330. If not indicated otherwise, the elements of
this tensor are referred to the body-fixed system.



6.3 The motion of rigid bodies 321

The validity of this relation can be demonstrated, beginning with

vi = V CM + (ω × ri,CM ) .

The position of the centre of mass and of the new origin are related by
(Fig. 6.26b)

RCM (t) = a(t) + RO(t) . (6.107)

(a) (b)

 CM

 B  I

coordinate system

 a
 iO r

 iCM r

 CM R
 O R

 z

 y

 x
position vectors

Fig. 6.26. Body-fixed system with arbitrary origin

The vector a changes its direction with time, its magnitude is, however,
independent of time (|a(t)| = const.), as the initial and the final point of the
vector are rigidly attached to the body. This implies the relation

ri,O = a + ri,CM . (6.108)

The velocity of the point O from the point of view of the space-fixed system
is

V O = V CM − (ω × a) .

The point O is translated with the centre of mass and rotates around the
centre with the angular velocity ω (as any body-fixed point). The equations
assembled allow the argument

vi = V CM + (ω × ri,CM )
= V O + (ω × a) + ω × (ri,O − a)
= V O + (ω × ri,O) .

The body-fixed system related to the centre of mass and the body-fixed sys-
tem related to an arbitrary point are equivalent. The velocity vi of a point
of the rigid body is composed of the velocity of the reference point in the
body-fixed system plus a rotation about an (instantaneous) axis through this
point. The same vector ω features in (6.99) as well as in (6.106). This means
that, the axes of rotation through the two reference points of the rigid body
are parallel for all times.

The expression for the kinetic energy (6.104) is not valid, if an arbitrary
origin is chosen in the body-fixed system. The sum

∑
i miriO does not vanish.
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For this reason the kinetic energy of a rigid body cannot be decomposed into
a translational plus a rotational part (see Chap. 6.3.3.5 for details).

6.3.3 The structure of the inertia matrix

It is necessary to take a closer look at the inertia matrix before choosing
generalised coordinates for the description of the rotation and the discussion
of the resulting equations of motion

The total mass of a rigid body with a continuous mass distribution is
given by

M =
∑

i

mi →
∫∫∫

V

ρ(r)dV .

The elements of the inertia matrix in the body-fixed system have to be cal-
culated by

Iμν =
∫∫∫

V

ρ(r)

{
δμν

3∑
λ=1

x2
λ − xμxν

}
dV (6.109)

for such a body. This calculation involves the evaluation of triple integrals
(see Math.Chap. 4.3.3).

6.3.3.1 Examples for the calculation of the elements of the inertia
matrix. A simple example is the inertia matrix of a sphere (radius R) with
a homogeneous mass distribution (Fig. 6.27a, rC denotes the separation of a
point from the centre of the sphere)

ρ(r) =

{
ρ for rC ≤ R

0 for rC > R .

The centre of mass is obviously the centre of the sphere. The orientation of the
axis is irrelevant because of the symmetry of the body. Cylinder coordinates
(r, ϕ, z – see however also Probl. 6.6) should be used for the evaluation of
the relevant triple integrals, as the integrand depends on the distance from a
coordinate axes (r) and not on the distance from the origin (rC) (Fig. 6.27b).
The calculation of e.g.

I33 =
∫∫∫

ρ(r)
(
x2

1 + x2
2

)
dx1dx2dx3

in cylinder coordinates

x1 = r cosϕ x2 = r sinϕ x3 = z

and a homogeneous mass distribution requires the evaluation of the integral

I33 = ρ

∫ R

−R

dz

∫ √
(R2−z2)

0

r3dr

∫ 2π

0

dϕ .
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(a) (b)

3x

2x
1x

body-fixed frame

 3 x

 C r

 r

integration variables

Fig. 6.27. Calculation of the inertia matrix of a sphere (homogeneous mass dis-
tribution)

The result of the simple calculation is

I33 =
8
15

ρπR5 =
2
5
MR2 .

The expression for the mass of the sphere

M =
4
3
πρR3

is used to simplify the final result. The calculation of the product of inertia
follows the same pattern, as for instance

I23 = −
∫∫∫

ρ(r)x2x3dx1dx2dx3

= −ρ

∫ R

−R

zdz

∫ √
(R2−z2)

0

r2dr

∫ 2π

0

sinϕdϕ

= 0 (because of
∫ 2π

0

sinϕ dϕ = 0) .

The complete inertia matrix can be written down directly because of the
symmetry

Îhom. sphere =

⎛
⎜⎜⎜⎜⎜⎝

2
5
MR2 0 0

0
2
5
MR2 0

0 0
2
5
MR2

⎞
⎟⎟⎟⎟⎟⎠ . (6.110)

All centrifugal moments vanish. The moments of inertia with respect to the
three body-fixed axes, are, as is to be expected because of the symmetry of
the object, equal.

The calculation of the moments of inertia could have been simplified with
the following argument: it is sufficient to evaluate the sum

I11 + I22 + I33 = 3I = 2ρ
∫∫∫

r2dV = 8πρ
R5

5
=

6
5
MR2 ,
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as all the moments of inertia are equal because of the symmetry. The result
can be read off immediately.

The second example is a homogeneous cube with an edge length a . The
orientation of the axes plays a role in this case. If the axes are perpendicular
to the centre of the lateral surfaces (Fig. 6.28a), the inertia matrix is found
to be (as a special case of the following example, the cuboid)

Îhom. cube =

⎛
⎜⎜⎜⎜⎜⎝

1
6
Ma2 0 0

0
1
6
Ma2 0

0 0
1
6
Ma2

⎞
⎟⎟⎟⎟⎟⎠ . (6.111)

An explicit calculation for an arbitrary orientation of the axes through the
centre of gravity is rather cumbersome. It turns out, as explained in the
following sections, that this result can be obtained by other means than the
evaluation of integrals.
The calculation of the inertia matrix of a homogeneous cuboid with the sides

(a) (b)

 a

 a

 a
cube

 c

 b
 a

cuboid

Fig. 6.28. Position of the axes for the calculation of the inertia matrix

a, b, c in the 1, 2, 3 - directions is also simple, provided the axes through the
centre of mass are perpendicular to the lateral surfaces. The result is (
Probl. 6.6)

Îhom. cuboid =

⎛
⎜⎜⎜⎜⎜⎝

1
12

M(b2 + c2) 0 0

0
1
12

M(a2 + c2) 0

0 0
1
12

M(a2 + b2)

⎞
⎟⎟⎟⎟⎟⎠ . (6.112)

The results quoted for the cube and the cuboid, invite the remark: The ques-
tion whether the inertia matrix is a diagonal matrix or not, seems to depend
on the orientation of the axes of the body-fixed system. If the axes are symme-
try axes, then the inertia matrix is diagonal, otherwise centrifugal moments
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occur. A set of axes, for which a diagonal inertia matrix is obtained, are called
principal axes of inertia. The corresponding moments of inertia (nomen-
clature Iμ) are called principal moments of inertia. The expression for
the kinetic energy of rotation in a principal axes system is simpler

Trot =
1
2

∑
μ

Iμ ω2
μ . (6.113)

6.3.3.2 The principal axes theorem. The question could be raised,
whether it is possible to find a body-fixed coordinate system for every (ar-
bitrarily shaped) body, so that only principal moments of inertia occur. An
answer is provided by the principal axes theorem:

At least one set of principal axes exists for every rigid body.

The proof of this theorem will be presented in some detail. The transition
from an arbitrary body-fixed system (1, 2, 3) to a potential principal axes
system (1̃, 2̃, 3̃) is achieved by a rotation about an axis through the common
origin (Fig. 6.29). The components of the position vector with respect to the

 ~

 ~

 ~

 3

 2

 1

 3

 2

 1

 ~ ω  ω =  

Fig. 6.29. Illustration of the principal axes theorem

two coordinate systems are related by a transformation matrix, the rotation
matrix D̂ (see Math.Chap. 3.2.3),⎛

⎝ x̃1

x̃2

x̃3

⎞
⎠ =

⎛
⎝D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ ,

symbolically

r̃ = D̂ r .

The only statement concerning the rotational matrix, that is needed, is: rota-
tions are orthogonal transformations. This property is characterised in matrix
form by∑

i

DkiDil = δkl ⇐⇒ D̂T D̂ = D̂ D̂T = Ê or D̂T = D̂−1 . (6.114)
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The transformation for the coordinates applies to any other vector, for in-
stance the angular velocity9 (for all times)

ω̃(t) = D̂ ω(t) . (6.115)

Insertion of the unit matrix in the expression for the kinetic energy and an
appropriate use of the relation (6.114) gives

Trot =
1
2
ωT Î ω =

1
2
ωT Ê Î Ê ω

=
1
2
ωT D̂T

[
D̂ Î D̂T

]
D̂ ω =

1
2
ω̃T

[
D̂ Î D̂T

]
ω̃ .

The matrix D̂ Î D̂T is expected to represent the inertia matrix in a principal
axes system Ĩ , so that

Trot =
1
2
ω̃T Ĩ ω̃ . (6.116)

The kinetic energy, a scalar quantity, has the same form in any system of
reference.

The relation

D̂ Î D̂T = Ĩ , (6.117)

becomes after multiplication by D̂T from the left or by D̂ from the right

Î D̂T = D̂T Ĩ respectively D̂ Î = Ĩ D̂ .

It has the explicit form⎛
⎝ I11 I12 I13

I21 I22 I23

I31 I32 I33

⎞
⎠

⎛
⎝D11 D21 D31

D12 D22 D32

D13 D23 D33

⎞
⎠ =

⎛
⎝D11 D21 D31

D12 D22 D32

D13 D23 D33

⎞
⎠

⎛
⎝ I1 0 0

0 I2 0
0 0 I3

⎞
⎠

provided the system marked by a tilde is a principal axes system. This matrix
equation corresponds to 9 (linear) equations. The first column of the product
matrix corresponds to the relations

I11D11 + I12D12 + I13D13 = I1D11

I21D11 + I22D12 + I23D13 = I1D12

I31D11 + I32D12 + I33D13 = I1D13 .

A similar set of equations is obtained with D2μ and I2 as well as with D3μ

and I3 . These equations correspond to the second and the third columns of
the product matrix. These equations have the same form, if the index of the
principal moment of inertia and the first index of the rotation matrix are
suppressed
9 Equation (6.115) relates the components of the vector ω , which is decomposed

with respect to the two coordinate systems.
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(I11 − I)D1 + I12D2 + I13D3 = 0
I21D1 + (I22 − I)D2 + I23D3 = 0
I31D1 + I32D2 + (I33 − I)D3 = 0 .

(6.118)

This system of equations represents an algebraic eigenvalue problem given
the matrix [Iμν ]. To be determined are the eigenvalues Iκ and the corre-
sponding eigenvectors (Dκ1, Dκ2, Dκ3) . The matrix of eigenvectors mediates
the transformation between the original body-fixed system and the principal
axes system. The principal axes theorem is proven, if there exists a physically
meaningful solution of this eigenvalue problem.

The discussion follows the pattern, which has been used for the problem
of coupled oscillators (compare (6.19)). The condition for the existence of a
nontrivial solution of the eigenvalue problem is

det(̂I − I Ê) = 0 . (6.119)

The corresponding secular equation is a cubic equation

I3 + aI2 + bI + c = 0

with three roots. The roots are real if the matrix is symmetric. This condition
(Iμν = Iνμ) is satisfied due to the definition of the centrifugal moments. The
roots are positive (Iμ > 0) if the condition

I11 + I22 > I33 (and all cyclic transpositions) (6.120)

is satisfied. The validity of the condition, that the sum of two diagonal ele-
ments of the matrix Î is larger than the third, can be demonstrated directly
as e.g. by

I11 + I22 =
∫∫∫

ρ(r)
{
x2

2 + x2
3 + x2

1 + x2
3

}
dV

= I33 + 2
∫∫∫

ρ(r)x2
3dV > I33 .

The three real positive roots are the principal moments of inertia of the rigid
body, which has been characterised initially by a full inertia matrix [̂Iμν ] .

This argument completes the proof of the principal axes theorem: there
exists always a set of body-fixed axes for which the inertia matrix is diagonal.
The principal axes are the symmetry axes of the body if the body exhibits
some symmetry.

The relative orientation of the two coordinate systems involved is deter-
mined by the rotation matrix D̂. This matrix is composed of the eigenvectors.
The solution of the linear system of equations (6.118) with the eigenvalues
Iμ yields the eigenvector (Dμ1, Dμ2, Dμ3), in detail

I1 −→ (D11, D12, D13)
I2 −→ (D21, D22, D23)
I3 −→ (D31, D32, D33) .
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6.3.3.3 Illustration of the principal axes theorem. An explicit example
is the following problem: given is the inertia matrix (in suitable units)

Î =

⎛
⎜⎜⎜⎜⎝

9 −2
√

2 −2
√

2

−2
√

2
19
2

−1
2

−2
√

2 −1
2

19
2

⎞
⎟⎟⎟⎟⎠ .

The task is the determination of the principal moments of inertia and the
orientation of the principal axes system with respect to the initial system
(see D.tail 6.5). Evaluation of the determinant (6.119) leads to the secular
equation

I3 − 28I2 + 245I − 650 = 0 ,

with the solution

I1 = 5 I2 = 10 I3 = 13 .

The order of the roots is arbitrary. A change of the order corresponds to a
renaming of the axes.

For the determination of the rotation matrix three systems of linear equa-
tions have to be solved. The result is the rotation matrix

D̂ =

⎛
⎝D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

1
2

1
2

0
1√
2

− 1√
2

− 1√
2

1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix D̂ describes the transformation of the original system into the
principal axes system. The inverse matrix D̂−1 = D̂T describes the rotation,
which would transform the principal axes system into the original one.

It can be shown with a little patience that the matrix D̂ factorises in the
form

D̂ = D̂2D̂1 =

⎛
⎜⎜⎜⎜⎝

1√
2

0
1√
2

0 1 0

− 1√
2

0
1√
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0

0
1√
2

− 1√
2

0
1√
2

1√
2

⎞
⎟⎟⎟⎟⎠ .

This implies that the first rotation (D̂1) is a rotation by an angle of −45◦

about the 1 -axis (Fig. 6.30a), followed by a second rotation with an angle of
45◦ about the 2 -axis of the intermediate coordinate system (Fig. 6.30b).

There remain three short remarks and one longer comment concerning
the structure of the inertia matrix.
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(a) (b)

 3’ 

 2’  1’

 3

 2

 1=

rotation 1

 3’’  1’’ 

 3’ 

2’’  2’=
 1’

rotation 2

Fig. 6.30. Illustration of the principal axes theorem

6.3.3.4 Additional remarks. The short remarks are:

1. The specification of three numbers for the principal moments of inertia
does not determine the shape of a body at all. Consider for example the
principal moments of a cuboid (6.112)

I1 =
M

12
(b2 + c2) I2 =

M

12
(a2 + c2) I3 =

M

12
(a2 + b2) .

The principal moments of inertia of a homogeneous ellipsoid with the
length a, b, c in the 1 -, 2 -, 3 - direction (see Probl. 6.6) are

I1 =
M

5
(b2 + c2) I2 =

M

5
(a2 + c2) I3 =

M

5
(a2 + b2) . (6.121)

An ellipsoid and a cuboid of the same mass will have the same principal
moments of inertia, if the lengths involved satisfy the relations

aC =

√
12
5

aE etc.

Every rigid body possesses three principal moments of inertia and every
set of three positive numbers can be represented by the formula for the
ellipsoid (6.121). It is therefore possible to characterise every rigid body
by an ellipsoid of inertia (possibly with 2 or 3 equal axes).

2. All expressions for the principal moments of inertia have the form

(geometrical factor) times (mass) times (the square of a characteristic
distance from the axis of rotation).

The form of the body can (within limits) be recognised by the factor, e.g.
2/5 for a sphere, 1/6 for a cube etc.

3. The distinction of scalars, vectors and tensors refers to the behaviour of
these quantities under linear coordinate transformations. A set of three
quantities (x1, x2, x3) which transforms according

x′
i =

∑
k

aik xk −→ x′ = Â x with Â = [aik]

form a vector. A set of 9 quantities, which transform according to
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y′
ik =

∑
lm

ail akm ylm (6.122)

are called the components of a tensor of second rank. The corresponding
matrix form of the transformation is

ŷ′ = Â ŷ ÂT . (6.123)

This is exactly the behaviour found for the inertia matrix (6.117) under
linear coordinate transformations. The name ’tensor’ is actually more
appropriate than ’matrix’ 10.

6.3.3.5 Steiner’s theorem. The body-fixed system with an origin at the
position of the centre of mass is nearly always a good choice for the discussion
of rotations of a rigid body. There is one exception: a point of the rigid body,
which is not the centre of mass, is at rest. It is preferable in this case to
choose a body-fixed system referred to this point.

This statement can be demonstrated in the following fashion: The velocity
transformation (6.106)

vi = V O + (ω × ri,O)

is, as shown, valid for every body-fixed point. This and the equation (6.108)
for the relation between the position vectors referred to the point O and
the centre of mass (the constant vector a denotes the separation of the two
points)

ri,O = ri,CM + a ,

can be used to express the kinetic energy of a rigid body as

T =
1
2

[
MV 2

O + 2
∑

i

miV O · (ω × ri,O)

+
∑

i

mi(ω × ri,O) · (ω × ri,O)

]
.

The second terms does not vanish in general. The expression for the kinetic
energy can be simplified to

T = Trot =
1
2

∑
i

mi(ω × ri,O)2 , (6.124)

if the point O is at rest (V O = 0). The decomposition into components with
respect to the system O yields as before for the centre of mass system

Trot =
1
2

∑
μ, ν

I(O)
μν ω(O)

μ ω(O)
ν . (6.125)

10 Please note: A tensor of second rank over R3 is always a 3 × 3 matrix. A 3 × 3
matrix is not necessarily a tensor.
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The inertia tensor and the components of the angular velocity are referred to a
coordinate system for which O is the origin. The angular velocity components
with respect to the system O and to the centre of mass system are equal, if
the coordinate axes of the two systems are chosen to be parallel

ω(O)
μ = ω(CM)

μ = ωμ .

The expression for the elements of the inertia tensor in the system O

I(O)
μν =

∑
i

mi

[
δμν

3∑
λ=1

x
(O)2
λi − x

(O)
μi x

(O)
νi

]

can be reformulated with

x
(O)
μi = x

(CM)
μi + aμ

in the following manner

I(O)
μν =

∑
i

mi

[
δμν

∑
λ

x
(CM)2
λi − x

(CM)
μi x

(CM)
νi

]

+
∑

i

mi

[
δμν

∑
λ

(2x(CM)
λi aλ + a2

λ) − (aμx
(CM)
νi + aνx

(CM)
μi + aμaν)

]
.

All terms linear in x
(CM)
μi vanish, as the sum∑

i

mix
(CM)
μi = 0

corresponds to the coordinates of centre of mass in the centre of mass system.
There remains

I(O)
μν = I(CM)

μν + M

[
δμν

∑
λ

a2
λ − aμaν

]
. (6.126)

This set of equations is known as Steiner’s parallel axes theorem. It
allows the calculation of the inertia matrix for an arbitrary body fixed coor-
dinate system if the inertia matrix is specified in the centre of mass system
provided the axes of the two systems are parallel. An example for the appli-
cation of this theorem is the following problem.
Calculate the inertia tensor of a homogeneous cube with edge length b for
the case that the origin of the coordinate system is one of the corner points
and that the axes are parallel to the edges. The moments of inertia for the
centre of mass system (with axes parallel to the edges) are (see 6.111)

Iμν = δμν
M

6
b2 .

The vector a from the centre of mass to the origin of O is e.g.

a =
(
−1

2
b, −1

2
b, −1

2
b

)
.
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The theorem gives

I
(O)
11 =

1
6
Mb2 + M

(
3
4
b2 − 1

4
b2

)
=

2
3
Mb2

and in view of the symmetry

I
(O)
11 = I

(O)
22 = I

(O)
33 .

The result for the centrifugal moments in the system O is

I
(O)
12 = 0 + M(−1

4
b2) = −1

4
Mb2

= I
(O)
13 = I

(O)
23 .

A coordinate system whose origin is displaced by a constant vector is not
necessarily a principal axes system even if this is the case for the centre of
mass system. If desired, a principal axes system through O can be determined
by solution of the relevant eigenvalue problem.

6.3.4 The angular momentum of a rigid body

The angular velocity is a basic quantity for the description of the motion
of a rigid body. A related quantity is the angular momentum. The relation
between these two quantities is not at all trivial. The angular momentum (of
a system of mass points) depends (see Chap. 3.2.2) on the point of reference.
A suitable point of reference is the centre of gravity, the usual origin of
the body-fixed frame. The total angular momentum of a rigid body in this
coordinate system is found to be

lCM =
∑

mi(ri,CM × vi,CM ) .

The velocity of the i -th mass for a rotational motion from the point of view
of the centre of mass is

vi,CM = (ω × ri,CM ) .

Insertion leads to

lCM =
∑

i

mi(ri,CM × (ω × ri,CM )) .

The reduction of the double vector product can be achieved with the identity
( Math.Chap. 3.1.2)

a × (b × a) = a2b − (a · b)a .

The result is

lCM =
∑

i

mi

[
r2

i,CMω − (ri,CM · ω)ri,CM

]
.
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The decomposition of this expression with respect to the body-fixed system
(using standard notation) is

lμ =
∑

i

mi

[
ωμ

∑
λ

x2
λi −

(∑
ν

xνiων

)
xμi

]

or sorted differently

lμ =
∑

ν

ων

[∑
i

mi

{
δμν

∑
λ

x2
λi − xνixμi

}]
.

The relation between the components of the angular momentum and the
angular velocity in the body-fixed system can therefore be written as

lμ =
3∑

ν=1

I(CM)
μν ων ≡

3∑
ν=1

Iμν ων (μ = 1, 2, 3) . (6.127)

These three equations can be summarised as a matrix equation

lCM = Î ω . (6.128)

The following remarks apply directly:
1. The vectors lCM and ω do not point in the same direction. This is not

even the case for a rotation about one of the body-fixed coordinate axes, e.g.
for ω = (ω, 0, 0)

lCM =

⎛
⎝ I11 I12 I13

I21 I22 I23

I31 I32 I33

⎞
⎠

⎛
⎝ω

0
0

⎞
⎠ =

⎛
⎝ I11ω

I21ω
I31ω

⎞
⎠ �= const. ω .

2. The relation between angular momentum and angular velocity is sim-
pler in a principal axes system

lCM =

⎛
⎝ I1 0 0

0 I2 0
0 0 I3

⎞
⎠

⎛
⎝ω1

ω2

ω3

⎞
⎠ =

⎛
⎝ I1ω1

I2ω2

I3ω3

⎞
⎠ .

The two vectors are still not collinear even in this case. They are collinear only
for the case of a spherical top (a body with three equal principal moments of
inertia I1 = I2 = I3 = I) or for a rotation about one of the body fixed axes,
e.g. the body-fixed 1 - axis ω = (ω, 0, 0)

lCM = I ω respectively lCM = I1ω .

The more complicated relation between the angular momentum and the an-
gular velocity is the reason for the relative complexity of the rotational motion
of a rigid body.

Some useful alternative expressions for the kinetic energy can be obtained
in terms of the angular momentum, as e.g.

Trot =
1
2

∑
μ

ωμ lμ =
1
2
ω · lCM , (6.129)
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if one of the sums (e.g.
∑

ν . . .) in the previous formula

Trot =
1
2

∑
μ, ν

Iμν ωμ ων

is replaced by the angular momentum (6.127).
There exist several options for a principal axes system

Trot =
1
2

∑
μ

Iμ ω2
μ =

1
2

∑
μ

lμ ωμ =
1
2

∑
μ

l2μ
Iμ

. (6.130)

The last form is particularly simple for a spherical top Iμ = I

Trot =
1
2I

l2CM . (6.131)

This concludes the discussion of the coordinate systems which are neces-
sary for the description of the motion of a rigid body as well as the intro-
duction of the relevant kinematic quantities (angular velocity, inertia tensor,
angular momentum). The next step, before the derivation of the equations of
motion and their solution, is the specification of the generalised coordinates
for the rotational motion.

6.3.5 The Euler angles

The Lagrangian of a rigid body is

L = T − U =
∑ mi

2
v2

i −
∑

U(ri) .

The discussion up to this point concentrated on the reformulation of the
kinetic energy

T = Ttrans + Trot

=
M

2
(Ẋ2 + Ẏ 2 + Ż2) +

1
2

∑
μ, ν

Iμν ωμ ων . (6.132)

Three of the six generalised coordinates are the coordinates of the centre of
gravity X, Y, Z . It remains to specify the generalised coordinates for an ex-
plicit description of the rotation. The usual choice is a set of three angles, the
Euler angles α(t), β(t), γ(t) , which describe the time change of the orien-
tation of the body-fixed frame with respect to a given space-fixed frame. The
corresponding generalised velocities are α̇, β̇, γ̇ . It is necessary to represent
the three components ωμ of the angular velocity in the body-fixed system in
terms of the generalised velocities (and coordinates) of the rotational motion.
The Lagrangian then becomes

L = T
(
Ẋ, Ẏ , Ż, α, β, γ, α̇, β̇, γ̇

)
− U (X, Y, Z, α, β, γ) .

Equations of motion can be derived on the basis of this Lagrangian following
the standard steps.
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The definition of the Euler angles is slightly awkward, but not really
difficult. The two coordinate systems

space − fixed : (x, y, z), body − fixed : (x1, x2, x3)

are assumed to coincide initially11. An arbitrary orientation of the body-fixed
coordinate system with respect to the space-fixed system can be described by
three rotations about different axes through the common origin, which are
executed consecutively.

Rotation 1: The body-fixed system is rotated anticlockwise by an angle α
about the z - axis (Fig. 6.31). This rotation is described by⎛

⎝x′
1

x′
2

x′
3

⎞
⎠ =

⎛
⎝ cosα sinα 0

− sinα cosα 0
0 0 1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠

I

. (6.133)

The components of a vector (e.g. the position vector) in the space-fixed sys-
tem and the new system (characterised by one dash) are related by a simple
rotation matrix. The range of the angle α is 0 ≤ α ≤ 2π .

 2’

 1’

 3’ 3 = 

 2

 1

 α

Fig. 6.31. The Euler angle α

Rotation 2: A rotation about the x′
1 - axis (known as the line of nodes)

again anticlockwise by the angle β (Fig. 6.32a). The rotation matrix connect-
ing the coordinates of these two systems (one and two dashes) is⎛

⎝x′′
1

x′′
2

x′′
3

⎞
⎠ =

⎛
⎝1 0 0

0 cosβ sinβ
0 − sinβ cosβ

⎞
⎠

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ . (6.134)

The range of the angle β is (see spherical coordinates) 0 ≤ β ≤ π .
Rotation 3: The third rotation is an anticlockwise rotation about the x′′

3 -
axis by the angle γ (Fig. 6.32b).This rotation is described by⎛

⎝x1

x2

x3

⎞
⎠

B

=

⎛
⎝ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎞
⎠

⎛
⎝x′′

1

x′′
2

x′′
3

⎞
⎠ . (6.135)

The range of the angle γ is 0 ≤ γ ≤ 2π .
11 The translation of the body-fixed system with respect to the space-fixed system

does not play any role in the discussion that follows.
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(a) (b)

  3’’

 2’’

1’’ 1’=

  3’

 2’

 β

the Euler angle β

3’’’  3’’= 3’’’

 2’’’

 1’’’

 2’’

 1’’  1’’’

 γ

the Euler angle γ

Fig. 6.32. Euler angles

The matrix for the total rotation, which arises by consecutive execution
of the three individual rotations, is obtained by multiplication of the three
transformation matrices

rB = D̂γ D̂β D̂α rI = D̂ rI .

The sequence of the operations should not be interchanged. Evaluation of the
matrix product yields the complete rotation matrix D̂

D̂ =

⎛
⎝− sin α cos β sin γ+cos α cos γ, cos α cos β sin γ+sin α cos γ, sin β sin γ

− sin α cos β cos γ−cos α sin γ, cos α cos β cos γ−sin α sin γ, sin β cos γ

sin α sin β, − cos α sin β, cos β

⎞
⎠ (6.136)

The rotation matrix describes the relation between the components of a vec-
tor in the space-fixed (I) and the body-fixed (B) system. The inverse trans-
formation is effected by the transposed matrix

rI = D̂T rB . (6.137)

The three Euler angles are the generalised coordinates for the description of
the rotational motion12.

The next step is the derivation of a relation between the three components
of the angular velocity and the time derivatives of the Euler angles. This
relation can be obtained by representing the time derivative of each individual
rotation by a vector, which is then decomposed into components with respect
to the body-fixed system.

1. α̇ is a vector in the z - direction of the space fixed system. The com-
ponents of this vector with respect to the body fixed system are obtained
by transformation with the rotation matrix D̂ in (6.136). One finds for this
reason
12 Variants of the definition of the Euler angles are found in the literature. They

differ by the sense of rotation and the choice of the line of nodes (for which
the x′

2 - axis can be chosen). Sufficient care has to be exercised if equations (of
motion or other) from the literature are used.
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⎝ α̇1

α̇2

α̇3

⎞
⎠

B

= D̂

⎛
⎝ 0

0
α̇

⎞
⎠

I

=

⎛
⎝ α̇ sinβ sin γ

α̇ sinβ cos γ
α̇ cosβ

⎞
⎠

B

. (6.138)

2. β̇ is a vector in the direction of the line of nodes. The decomposition
with respect to the body-fixed system is obtained by a rotation with D̂γ from
equation (6.135) about the angle γ⎛

⎝ β̇1

β̇2

β̇3

⎞
⎠

B

= D̂γ

⎛
⎝ β̇

0
0

⎞
⎠ =

⎛
⎝ β̇ cos γ

−β̇ sin γ
0

⎞
⎠

B

. (6.139)

3. γ̇ is a vector along the x3 - axis of the body fixed system with the
decomposition

γ̇ =

⎛
⎝ 0

0
γ̇

⎞
⎠

B

. (6.140)

Addition of the components of the vectors of the individual angular velocities
(α̇, β̇, γ̇) in the body-fixed frame yields the components of the total angular
velocity ωμ

ωμ = α̇μ + β̇μ + γ̇μ (μ = 1, 2, 3) .

The representation of the components of the angular velocity in the body
fixed system in terms of the generalised velocities α̇, β̇, γ̇ is therefore given
by

ω1 = α̇ sinβ sin γ +β̇ cos γ

ω2 = α̇ sinβ cos γ −β̇ sin γ
ω3 = α̇ cosβ +γ̇ .

(6.141)

This relations have to be inserted into the expression for the rotational kinetic
energy. The simplest is the principal axes form

Trot =
1
2

∑
μ

Iμ ω2
μ = Trot(β, γ, α̇, β̇, γ̇) . (6.142)

6.3.6 The equations of motion for the rotation of a rigid body

The derivation of the equations of motion follows the standard steps. The
(simple) equations of motion for the translational motion

MẌ = − ∂U

∂X
MŸ = −∂U

∂Y
MZ̈ = −∂U

∂Z
(6.143)

can be obtained directly from the Lagrangian

L =
M

2

(
Ẋ2 + Ẏ 2 + Ż2

)
+ Trot(β, γ, α̇, β̇, γ̇)

−U(X, Y, Z, α, β, γ) . (6.144)
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The right hand side of (6.143) represents the components of the generalised
force, which control the motion of the centre of mass.

The steps for the derivation of the equations of motion, which charac-
terise the rotation, will not be detailed here in full13. The equation for the
coordinate γ is the simplest. It follows from

d
dt

(
∂Trot

∂γ̇

)
− ∂Trot

∂γ
= −∂U

∂γ
. (6.145)

The right hand side represents to the appropriate generalised force. As the
coordinate is an angle, the generalised force represents a torque. For the
evaluation of the left hand side (LS) the chain rule

LS =
d
dt

(∑
μ

∂Trot

∂ωμ

∂ωμ

∂γ̇

)
−
∑

μ

∂Trot

∂ωμ

∂ωμ

∂γ

has to be applied. The following derivatives are needed

∂Trot

∂ωμ
= Iμωμ

∂ω1

∂γ̇
=

∂ω2

∂γ̇
= 0

∂ω3

∂γ̇
= 1

∂ω1

∂γ
= α̇ sinβ cos γ − β̇ sin γ = ω2

∂ω2

∂γ
= −α̇ sinβ sin γ − β̇ cos γ = −ω1

∂ω3

∂γ
= 0 .

The left hand side can be summarised as

LS =
d
dt

(I3ω3) − (I1ω1ω2 − I2ω2ω1) ,

so that the equation of motion takes the form

I3ω̇3 − (I1 − I2)ω1ω2 = −∂U

∂γ
. (6.146)

The explicit form of this equation of motion (rather than the summary given
above) is obtained, if the angular velocities ωμ are expressed in terms of the
Euler angles. This result is

I3(α̈ cosβ − α̇β̇ sinβ + γ̈) − (I1 − I2) (6.147){
[α̇2 sin2 β − β̇2] sin γ cos γ + α̇β̇ sinβ(cos2 γ − sin2 γ)

}
= −∂U

∂γ
.

13 A detailed discussion of all the steps which are necessary for the derivation of
the equations of motion in terms of the Euler angles are given in D.tail 6.6
and 6.7.
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It should be noted that the equation of motion in terms of the Euler angles
are coupled (in a rather complicated fashion). Any detailed discussion has to
be based on this form. The form in terms of the components of the angular
velocities in the body-fixed system is on the other hand sufficient for the
treatment of some problems.

The Lagrange equations for the coordinates α and β are still more com-
plicated. A lengthier calculation leads to the results (see D.tail 6.6)

d
dt

(
∂T

∂α̇

)
− ∂T

∂α
= − ∂U

∂α

= α̈
[(

I1 sin2 γ + I2 cos2 γ
)
sin2 β + I3 cos2 β

]
+ 2α̇β̇

[
I1 sin2 γ + I2 cos2 γ − I3

]
sinβ cosβ

+ 2α̇γ̇ [I1 − I2] sin2 β sin γ cos γ

+ β̈ [I1 − I2] sinβ sin γ cos γ

+ β̇2 [I1 − I2] cosβ sin γ cos γ

+ β̇γ̇
[
(I1 − I2)(cos2 γ − sin2 γ) − I3

]
sinβ

+ γ̈ I3 cosβ

(6.148)

and

d
dt

(
∂T

∂β̇

)
− ∂T

∂β
= − ∂U

∂β

= α̈ [I1 − I2] sinβ sin γ cos γ

+ α̇2
[
I3 − I1 sin2 γ − I2 cos2 γ

]
sinβ cosβ

+ α̇γ̇
[
I3 + (I1 − I2)(cos2 γ − sin2 γ)

]
sinβ

+ β̈
[
I1 cos2 γ + I2 sin2 γ

]
− 2β̇γ̇ [I1 − I2] sin γ cos γ .

(6.149)

Terms involving the expression Iμω̇μ do not occur directly in these equations
as might have been expected in view of the expression (6.132) for the kinetic
energy. The reason is the more complicated relation (6.141) between the
components of the angular velocity ωμ and the time derivatives of the Euler
angles. There exist no generalised coordinates which correspond directly to
the quantities ωμ .

The differential equations for the angular velocity components ω1 and ω2,
which correspond to (6.146), follow from (6.147), (6.148) and (6.149) for the
Euler angles by taking suitable linear combinations

I1 ω̇1 − (I2 − I3) ω2 ω3 =
1

sinβ
(6.150)[

− sin γ
∂U

∂α
− sinβ cos γ

∂U

∂β
+ cosβ sin γ

∂U

∂γ

]
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I2 ω̇2 − (I3 − I1) ω1 ω3 =
1

sinβ
(6.151)[

− cos γ
∂U

∂α
+ sinβ sin γ

∂U

∂β
+ cosβ cos γ

∂U

∂γ

]
.

The expressions on the right hand side correspond to the components of
the torque in the 1 - and 2 - direction of the body-fixed frame. The form of
these quantities indicates, in which way the equations of motion in terms of
generalised coordinates α, β and γ have to be combined (see D.tail 6.7).

The equations for the rotational motion of a rigid body are (in the short
form)

I1 ω̇1 − (I2 − I3)ω2 ω3 = M1

I2 ω̇2 − (I3 − I1)ω3 ω1 = M2 (6.152)
I3 ω̇3 − (I1 − I2)ω1 ω2 = M3 .

They can be summarised in the compact (but not very lucid) form∑
λ

εμνλ (Iλ ω̇λ − Mλ) − (Iμ − Iν)ωμ ων = 0

with (μ, ν) = (1, 2), (2, 3), (3, 1) (6.153)

because of their cyclic nature. The quantity εμνλ represents the Levi-Civita
symbol (see Math.Chap. 3.1.2). The set of differential equations (6.152)
(or (6.153)) is known as Euler’s equations. The Euler equations do not
contain any torques for a freely rotating body (U = 0).

The solution of the Euler equations (with or without the action of torques)
or of the equations of motion in terms of the Euler angles describe the – in
general rather complicated – time development of the rotational motion of a
rigid body. The next section illustrates this remark.

6.3.7 Rotational motion of rigid bodies

The motion of the physical pendulum and of spinning tops can be calculated
with the aid of Euler’s equations (6.152) in the short or in the long form.

6.3.7.1 The physical pendulum. The physical pendulum is a rigid body
which rotates about an axis through an arbitrary body-fixed point. The Euler
equations reduce to

I
(O)
1 ω̇1 = M1

if the axis of rotation corresponds to a principal axis (e.g. the 1 - axis). The
moment of inertia I

(O)
1 has to be calculated with the parallel axes theorem

(6.126). The torque (due to gravitation) depends on the sine of the angle
by which the pendulum is displaced, so that the results of the mathematical
pendulum (Chap. 4.2.1) can be applied directly. The only change is the re-
placement of the quantity [g/l]1/2 by [Mgs/I

(O)
1 ]1/2 , where M is the mass
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of the rigid body and s is the shortest distance between the centre of mass
and the axis of rotation.

6.3.7.2 Calculation of the rotation of a force-free symmetrical top.
The simplest example of a spinning top is the force-free spherical top with
I1 = I2 = I3 . The axis of rotation and the angular velocity do not change
with time. This follows from the simple equations of motion

ω̇μ = 0 (μ = 1, 2, 3)

with the solution ωμ(t) = ωμ(t = 0) .
The situation is less trivial for the force-free symmetric top, for instance

with the principal moments of inertia I1 = I2 = I , I3 �= I . The 3 - axis is the
axis of symmetry in this case. An ellipsoid of revolution (also referred to as
a spheroid) can serve as a representative of a symmetric top. The following
shapes have to be distinguished:

• I > I3 The mass distribution is concentrated around the 3 -axis. The top
has, relative to the 3 - axis, the form of a cigar (Fig. 6.33a). Such a top is
called prolate.

• I < I3 The shape is flattened in this case (Fig. 6.33b). This is an oblate
top.

(a) (b)

 3

prolate

 3

oblate

Fig. 6.33. Symmetric tops

The force-free symmetric top can be discussed with the Euler equation of
the form (6.152). The equation of motion for the 3 - component of the angular
velocity of a symmetric top with I1 = I2 = I is

I3 ω̇3 = 0 −→ ω3(t) = ω3(0) .

The component of the angular velocity, with respect to the 3 - axis does not
change with time. The equations of motion for the other components can be
solved in a direct fashion. The equations

I ω̇1 − (I − I3)ω2 ω3 = 0
I ω̇2 − (I3 − I)ω3 ω1 = 0
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reduce to a relative simple system of coupled differential equations

ω̇1 + Ω ω2 = 0 ω̇2 − Ω ω1 = 0

if the definition

Ω =
(

I3 − I

I

)
ω3 = const. (6.154)

is introduced. A solution of the coupled differential equations requires differ-
entiation of e.g. the first equation with respect to time and insertion of the
second equation. The result is

ω̈1 + Ω ω̇2 = ω̈1 + Ω2 ω1 = 0 .

This differential equation of an harmonic oscillator has the solution

ω1(t) = C1 cosΩt + C2 sinΩt . (6.155)

The function ω2(t) can be calculated directly

ω2 = − 1
Ω

ω̇1 = C1 sinΩt − C2 cosΩt . (6.156)

The initial condition

ω1(0) = A ω2(0) = 0

will be used for a more detailed discussion of the solution. The top rotates
initially about the 1 - axis (and about the 3 - axis). The resulting special
solution

ω1(t) = A cosΩt ω2(t) = A sinΩt (6.157)

describes the projection of the angular velocity vector onto the 1 − 2 plane
of the body-fixed system (Fig. 6.34a). The projection of the endpoint of ω
onto the 1 - 2 plane rotates uniformly with the frequency Ω on a circle. The
projection of the vector of the angular velocity on the 3 - axis is constant.
This implies that the vector ω rotates with the same frequency on a cone
about the symmetry axis. The motion of the ω - vector is called the regular
precession. Ω is the frequency of the precession. The sense of rotation is
positive (counterclockwise) if Ω is positive.

The components of the angular momentum vector in the body fixed frame
are according to (6.127)

lCM =

⎛
⎝ I1ω1

I2ω2

I3ω3

⎞
⎠

B

=

⎛
⎝ IA cosΩt

IA sinΩt
I3ω3

⎞
⎠

B

. (6.158)

The angular momentum vector, as observed in the body-fixed system,
rotates about the symmetry axis with the same frequency, however, on a
cone with a different apex (opening) angle (Fig. 6.34b). The vectors ω and
lS span for all times a plane which includes the symmetry axis. The ratio of
the amplitudes is
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(a) (b)

 3

 2

 1

  (t) ω
  (0) ω

ω-cone

 3

 2

 1

  CM l

 ω

angular momentum and angular velocity

Fig. 6.34. Regular precession of a prolate, symmetrical top in the body-fixed
system

I3ω3

IA
<

ω3

A

for a prolate top (I > I3). The apex angle of the l - cone is larger than that
of the ω - cone (Fig. 6.35a) for this shape. The l - cone is inside of the ω -
cone ( 6.35b) for an oblate top. The kinetic energy of the top is

(a) (b)

 CM l

 ω

 3

prolate top

 CM l
 ω

 3

oblate top

Fig. 6.35. Regular precession observed in the body-fixed system

Trot =
1
2
lCMω =

1
2
(IA2 + I3ω

2
3) = const.

As no forces act on the top, energy must be conserved.

6.3.7.3 Illustration of the rotation of a force-free symmetric top in
the space-fixed frame. A study of the vectors ω and l from the point of
view of the body-fixed system does not convey an impression of the actual
motion of the symmetric top. The time development of the motion has to
be viewed from the space-fixed inertial system for this purpose. A possible
uniform translation is not of interest, so that the centre of mass can be
chosen as the origin of both coordinate systems. The relation between the
time derivatives in the space-fixed and the body-fixed coordinate systems
(see Chap. 6.2, rotating coordinate systems) is valid for each vector, therefore
also for the angular momentum

l̇I = l̇B + (ω × lB) .
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Insertion of the quantities required (lB ≡ lCM, see D.tail 6.8) on the right
hand side yields, as expected,

l̇I = 0 . (6.159)

The angular momentum in an inertial system is a conserved quantity for a
force-free motion. The angular momentum is a vector fixed in space so that
both the axis of symmetry and the vector of the angular velocity precess
about it from the point of view of the space-fixed frame (Fig. 6.36).

 ω

 l

 3

 SF

 I

Fig. 6.36. Regular precession: Viewed from the space-fixed
system

The actual motion can be illustrated with Poinsot’s construction. For
a prolate top the following situation (Fig. 6.37) is found: The ω - vector,

 3

 I

 ω

 l

Fig. 6.37. Regular precession: Poinsot’s construction for
a prolate top

which marks the instantaneous axis of rotation, rotates on a cone about the
angular momentum vector (which is fixed in space). This cone is the space
fixed cone (herpolhode). A second cone, the body fixed cone (polhode),
whose axis is the symmetry axis, rolls on the space fixed cone.

The rolling of the body fixed cone on the space fixed cone is such that
the line of contact of the two cones corresponds to the ω - vector. The three
vectors (angular momentum, angular velocity and symmetry axis) lie (as in
the body-fixed frame) for all times in the same plane. The resulting motion
of the symmetry axis and the rolling motion of the body fixed cone provide
an impression of the rotational motion of a force-free rigid body with the
characteristics of a symmetrical ellipsoid of rotation. The body fixed cone
rolls, as can be checked with a similar construction, on the inside of the
space fixed cone in the case of an oblate top (Fig. 6.38).
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 l

 ω
 3

 I

Fig. 6.38. Regular precession: Poinsot’s construction for
an oblate top

The theory of the force-free, symmetric top has some relevance for the
discussion of the rotation of the earth. The earth is, in reasonable approxi-
mation, a force-free, oblate top with the axes a = b = 6377 km (equator) and
c = 6356 km (pole). The symmetry axis (geometric north pole) differs from

 ω
 3

Fig. 6.39. Regular precession of the symmetry axis of the
earth

the axis of rotation (ω). The kinematical north pole marks a circle about the
geometric north pole (Fig. 6.39). The frequency of precession is

|Ω| =
∣∣∣∣I3 − I

I
ω3

∣∣∣∣ .

The period of this precession can be calculated to be

T =
2π
Ω

≈ 305 days ≈ 10months ,

if the moments of inertia of the earth (assuming a homogeneous distribution
of mass) are obtained from the known data and if ω3 = 2π/day is used.

The corresponding ’experimental’ data are:

• The precession is not regular, there are fluctuations related to meteorolog-
ical and geological events.

• The mean period is not 10 months but approximately 14 months (Chandler
period). The discrepancy is explained by a detailed theory, which makes
allowances for the fact that the earth is not completely rigid, but quasi
fluid14.

14 The interested reader will find a relevant publication under [7] in the list of
references.
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• The radius of the circle of precession of the ω - cone on the surface of the
earth is about 4 m (in the mean).

The discussion of the force-free top has to be replaced by the solution of
the Euler equations in terms of the Euler angles if more detailed information
is desired. This more involved approach is indicated in the next section.

6.3.7.4 The time development of the Euler angles for the force-free
symmetric top. The discussion of the motion of a top can be put on a
fully quantitative level, if the explicit calculation based on the equations of
motion (6.147), (6.147) and (6.147) in terms of the Euler angles is carried
out. Such a calculation will be presented for the example of a symmetric top
(I1 = I2 = I �= I3). The expression (6.142) for the rotational kinetic energy
simplifies in this case

Trot =
1
2

[
I(β̇2 + α̇2 sin2 β) + I3(γ̇ + α̇ cosβ)2

]
. (6.160)

A corresponding simplification can be expected for the Euler equations. It
is, however, possible to approach the problem of the free symmetric top in a
more direct fashion.

The Lagrangian of the free top Lfree ≡ T does not depend on the angles
α and γ . The corresponding generalised momenta

pα =
∂T

∂α̇
= Iα̇ sin2 β + I3(γ̇ + α̇ cosβ) cosβ = C1 (6.161)

and

pγ =
∂T

∂γ̇
= I3(γ̇ + α̇ cosβ) = C2 (6.162)

are conserved quantities. The constants C1 and C2 are determined by the
initial conditions which are to be specified. Insertion of the expression (6.141)
for γ̇ into (6.162) reproduces the statement

I3ω3 = C2 (6.163)

of the previous section. The projection of the vector of the angular velocity
on the symmetry axis ω3 is a conserved quantity. Combination of (6.161) and
(6.162) yields the relation

Iα̇ sin2 β = C1 − C2 cosβ (6.164)

which can be used together with (6.162) to eliminate the derivatives α̇ and γ̇
from the Lagrangian (6.160). The result is an expression which depends only
on β and its derivatives

Lfree =
1
2

[
Iβ̇2 +

(C1 − C2 cosβ)2

I sin2 β
+

C2
2

I3

]
. (6.165)

This result could also be obtained by elimination of the angles α and γ from
the Euler equation for β and a first integration.
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The constant term C2
2/I3 can be incorporated into the conserved energy

by using the energy value

E = E0 − C2
2

2I3
(6.166)

instead of E0 = Lfree(0) .
The rescaled Lagrangian (6.165) corresponds to the differential equation

β̇ = ±
[2E

I
− (C1 − C2 cosβ)2

I2 sin2 β

]1/2

(6.167)

for the function β(t) . The notation can be simplified with the abbreviations

a = 2E/I a1 = C1/I a2 = C2/I . (6.168)

In addition, the variable β is replaced with the substitution

q = cosβ with q̇ = −β̇ sinβ

(compare the discussion of the spherical pendulum). The resulting differential
equation can be solved by separation of variables

t =
∫ q

q(0)

dq′√
a(1 − q′2) − (a1 − a2q′)2

. (6.169)

The radicand in this integral is a quadratic function, so that the integral can
be evaluated in an elementary fashion15.

The result for q(t) , respectively β(t) can be inserted into the differential
equations (6.161) and (6.162) (or (6.164)) for the functions α(t) and γ(t) . A
direct integration (possibly numerically) of these equation yields the remain-
ing ingredients for the construction of the time dependent rotation matrix
(6.136), which describes the motion of the body-fixed system (that is the top)
with respect to the (inertial) space-fixed coordinate system. For example, the
projection of the symmetry axis onto the space-fixed system is obtained as
one of the relations contained in the transformation (6.137). The result is

(x, y, z)sym.ax ,I = (sinα(t) sinβ(t), − cosα(t) sinβ(t), cosβ(t)) (6.170)

if the symmetry axis is characterised in the body-fixed system by the vector
rB = (0, 0, 1) . This result illustrates the following features:

• The angle β(t) is the (time changing) angle between the vertical (the z -
axis of the space-fixed system) and the axis of symmetry. This function
describes the ’wobbling motion’ of the top.

and
15 More details concerning the explicit calculation of the motion of the free, sym-

metric top are presented in D.tail 6.9.
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• The projection of the axis of symmetry onto the x - y plane rotates coun-
terclockwise in this plane for positively increasing values of the angle α(t) .
A snap shot of the situation is indicated in Fig. 6.40. The figure also shows
the limits β1 and β2 for the possible variation of the angle β (black arrows)
which is discussed below. The additional rotation of the top about the axis
of symmetry (the rotation by the angle γ) is not described by (6.170).

 (t) 

 (t) 

 y 

 x  α

 β
 3 

 z 

Fig. 6.40. Inertial system: The rotating symmetry
axis of the free top

It is possible to extract some information concerning the form of the
precession of the top without an explicit solution of the equations of motion.
The Lagrangian (6.165) can be decomposed into a kinetic part for the angle
β and an effective potential. Two possible shapes of this effective potential

Ueff =
(C1 − C2 cosβ)2

2I sin2 β
(6.171)

are illustrated in Fig. 6.41 for the relevant interval 0 ≤ β ≤ π. This fi-
gure demonstrates that the angle β can only vary within a restricted range
β1 ≤ β ≤ β2 which is determined by the initial energy E0 .

(a) (b)
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 eff U
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 β

C1 > C2

 β

 eff U
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 β

 1
 β

C2 > C1

Fig. 6.41. Effective potential of the free top



6.3 The motion of rigid bodies 349

6.3.7.5 The heavy symmetric top. A symmetric top, which is supported
in a point of the axis of symmetry (in most cases the tip, which is not the
centre of mass) is called a heavy symmetric top (Fig. 6.42). The (constant)
gravitational force exerts a torque on the top in this case. The point of support
(which is considered to be stationary) serves as the common origin of the
space-fixed and the body-fixed coordinate systems. The total kinetic energy
of the top is then only rotational (according to the relation (6.124)). The
torque acting on the top is

M = MK(s × g) ,

where MK is the mass of the top and s is the vector from the point of support
to the centre of mass. The vector of the torque (see Fig. 6.42) is perpendicular
to the vertical and the axis of symmetry. It points in the direction of the line of
nodes ( D.tail 6.10) and hence leads to a rotation of the angular momentum
vector. The calculation of the motion of the heavy top differs only slightly

 M

 s mg

Fig. 6.42. Heavy top

from the case of the free top on a formal level. The Lagrangian of the free
top has to be supplemented by the potential energy due to the torque

Ugrav(β) = MKgs cosβ . (6.172)

The coordinates α and γ are still cyclical as the additional energy term de-
pends only on the angle β . This implies that the steps between (6.161) and
(6.169) can be repeated with the extended Lagrangian16

Lheavy =
1
2

[
I(β̇2 + α̇2 sin2 β) + I3(γ̇ + α̇ cosβ)2

]
− MKgs cosβ . (6.173)

The solution of the extended equation of motion for the angle β can be written
down after the substitution q = cosβ and use of the definitions (6.168) for
the parameters

t =
∫ q

q(0)

dq′√
(a − bq′)(1 − q′2) − (a1 − a2q‘)2

. (6.174)

16 The moments of inertia are, however, referred to a body-fixed coordinate system
with the point of support as the origin.
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The additional parameter b is defined as b = 2MKgs/I . The relation (6.174)
for the heavy top differs from the corresponding relation (6.169) for the free
top. The radicand is given by a cubic polynomial in the present case instead
of a quadratic function in q. The integral in (6.174) corresponds to an elliptic
integral of the first kind17. Further discussion along the lines indicated
before involves therefore heavier mathematical tools.

It is, however, still possible to gain some insight into the motion of the
heavy top by a discussion of the polynomial in (6.174) and an effective po-
tential similar to the one given in (6.171). The effective potential, which can
be extracted from the Lagrangian (6.173)

Ueff, heavy(β) =
(C1 − C2 cosβ)2

2I sin2 β
+ MKgs cosβ , (6.175)

is represented in Fig. 6.43. The angle β is also restricted to a finite interval

 β

 eff U

 0
 β

 2
 β

 1
 β Fig. 6.43. Effective potential for a heavy top (C1 > C2)

β1 ≤ β ≤ β2 for a given initial energy. The potential has a minimum for
β0 which is more pronounced for the heavy top due to the additional term
in cosβ. The angle between the symmetry axis and the vertical will remain
constant in time for this value of β. This angle of inclination of the symmetry
axis with respect to the vertical (β0) is determined by

dUeff, heavy

dβ

∣∣∣
β0

= 0 .

Direct evaluation ( D.tail 6.11) leads to the condition

(C1 − C2 cosβ0) =
C2 sin2 β0

2 cosβ0

[
1 ±

√
1 − 4MKgsI cosβ0

C2
2

]
. (6.176)

The radicand in (6.176) can only be positive for β0 ≤ π/2 , if the condition

C2
2 ≥ 4MKgsI cosβ0

or using (6.163)

ω3 ≥ 2
I3

√
MKgsI cosβ0

17 For a comparison with the elliptic integral in Chap. 4.2.1 see Math.Chap. 4.3.4.



6.3 The motion of rigid bodies 351

is satisfied. If the initial conditions lead to the angle β0 , the following motion
can be observed.

• A quasi-regular precession of the symmetry axis of the heavy top occurs
for angles with β0 ≤ π/2 provided the inequality for the angular momen-
tum component ω3 is satisfied as well. This precession is described by the
angle α(t) . The symmetry axis rotates about the vertical with a constant
angular velocity (see (6.164))

α̇ =
C1 − C2 cosβ0

I sin2 β0

. (6.177)

There exists a slower or a faster version of this precession as the condition
(6.176) admits two different positive values for C1 − C2 cosβ0 .

• The case with β0 ≥ π/2 corresponds to a situation in which the point
of support (a point of suspension actually) is above the centre of mass,
a situation which can only be realised with a gyroscopic suspension. The
condition (6.176) leads to two values for (C1 − C2 cosβ0) with a different
sign as cosβ0 is negative for this range of angles. The relation (6.177) then
shows that the top rotates in the same sense as for the case β0 < π/2 for
the faster (positive) component but in the opposite sense for the slower
(negative) one.

The motion of the symmetry axis is more complicated, if the top is not in
the minimum of the effective potential. The sign of α̇ changes also according
to (see (6.164) again)

α̇ =
C1 − C2 cosβ

I sin2 β
,

while the angle β varies between the two limiting values. Details depend on
the integration constants C1 and C2 . The top precesses monotonously if there
is no change of sign. The projection of the symmetry axis onto a unit sphere
describes a sort of oscillation within the band between the limiting angles β1

and β2 (Fig. 6.44a). Such a motion is called a nutation. The oscillation of
the symmetry axis is replaced by a looping motion (Fig. 6.44b), if the sign
of α̇ changes with a change of the values of β, because the precession for the
upper and the lower values of β has a different sign. A special case may occur
for

(C1 − C2 cosβi) = 0

which gives

α̇(βi) = 0 β̇(βi) = 0 (for i = 1 or 2) .

This leads to a projection of the motion of the axis of symmetry on the unit
sphere with spikes and arcs (Fig. 6.44c).

This discussion could also be based on the radicand in (6.174). The qua-
litative behaviour of the function
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(a) (b) (c)

Fig. 6.44. Motion of a heavy top: Projection of the symmetry axis on a unit
sphere for different ratios of the integration constants C1/C2

f(q) = (a − bq)(1 − q2) − (a1 − a2q)2

is similar to that of the function (5.97) found for the discussion of the spherical
pendulum. The function f(q) can, in general, have three zeros. Two of the
zeros limit the range of positive values of the function f . They must lie in the
range of physical interest, the interval −1 ≤ q ≤ 1 . These zeros correspond
to the two limiting angles β1 and β2.

The treatment of the asymmetric top (free or heavy) is even more in-
volved. In the calculation of the motion of the free asymmetric top elliptic
integrals occur already during the solution of the simpler Euler equations of
motion (6.152). The various cone constructions can be used, but the guiding
curves are not circles as in the case of the symmetric top. They are transcen-
dental curves, which do not close in the general case.18.

18 The standard text on the theory of tops (list of references [8]) has been published
more then 100 years ago.
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The following data are collected in this Appendix:

• The brief list of biographical data of scientists is intended to put the topics
associated with these names into the proper historical context.

• The Greek alphabet which is used extensively in physics and mathematics.
• A short list of other mathematical symbols found in the text.
• The physical quantities relevant in mechanics are listed together with their

units in the CGS- and SI-systems.
• Conversion factors for common physical quantities.
• A selection of astronomical data (for planetary motion).
• A rudimentary collection of formulae.
• A listing and a brief outline of the problems sorted by chapter which can

be found on the virtual CD-ROM.



A Biographical data

The following data are extracted from a number of sources (encyclopediae,
internet) and from D. Hoffmann (ed.) et al.: ’Lexikon der bedeutenden Natur-
wissenschaftler’ (Spektrum Akademischer Verlag, Heidelberg, 2007). Uncer-
tain dates are marked by (?).



360 A Biographical data

d’Alembert, Jean le Rond French philosopher
∗ 16.11.1717 Paris (France)
† 29.10.1783 Paris (France)

Archimedes Greek mathematician and physicist
∗ 287(?) v. Chr. Syracuse (Italy)
† 212 v. Chr. Syrakus (Italy)

Atwood, George English mathematician and physicist
∗ 1745/46(?) London (England)
† 11.07.1807 London (England)

Bernoulli, Jacob Swiss mathematician
∗ 27.12.1654 Basel (Switzerland)
† 16.08.1705 Basel (Switzerland)

Bernoulli, Johann Swiss mathematician
∗ 27.07.1667(?) Basel (Switzerland)
† 01.01.1748 Basel (Switzerland)

Cavendish, Henry English physicist and chemist
∗ 10.10.1731 Nice (France)
† 24.02.1810 London (England)

Chadwick, Sir James English physicist
Nobel price 1935
∗ 20.10.1891 Manchester (England)
† 24.07.1974 Cambridge (England)

Chandler, Seth Carlo American astronomer
∗ 16.09.1846 Boston (USA)
† 13.12.1913 Wellesley Hills (USA)

Chasles, Michel French mathematician
∗ 15.11.1793 Epernon (France)
† 18.12.1880 Paris (France)
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de Coriolis, Gustave Gaspard French physicist
∗ 21.05.1792 Paris (France)
† 19.09.1843 Paris (France)

Cockroft, Sir John Douglas English physicist
Nobel price 1951
∗ 27.05.1887 Todmorden (England)
† 18.09.1967 Cambridge (England)

de Coulomb, Charles Augustin French physicist
∗ 14.06.1736 Angoulême (France)
† 23.08.1806 Paris (France)

Descartes, René, French philosopher and mathematician
(Renatus Cartesius) ∗ 31.03.1596 La Haye (France)

† 11.02.1650 Stockholm (Sweden)

Einstein, Albert German physicist
Nobel price 1921
∗ 14.03.1897 Ulm (Germany)
† 18.04.1955 Princeton (USA)

Euler, Leonhard Swiss mathematician and astronomer
∗ 15.04.1707 Basel (Switzerland)
† 18.09.1783 St Petersburg (Russia)

Feynman, Richard Phillips American physicist
Nobel price 1965
∗ 11.05.1918 New York (USA)
† 15.02.1988 Los Angeles (USA)

Foucault, Jean Bernard Léon French physicist
∗ 18.09.1819 Paris (France)
† 11.02.1868 Paris (France)

Fourier, Joseph Baron French mathematician
∗ 21.03.1768 Auxerre (France)
† 16.05.1830 Paris (France)

Galilei, Galileo Italian physicist and astronomer
∗ 15.02.1564 Pisa (Italy)
† 08.01.1642 Arcetri (Italy)

Geiger, Hans Wilhelm German physicist
∗ 30.09.1882 Neustadt (Germany)
† 24.09.1945 Potsdam (Germany)
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Halley, Edmond English astronomer
∗ 08.11.1656 London (England)
† 14.01.1742 Greenwich (England)

Hamilton, Sir William Rowan Irish mathematician
∗ 03/04.08.1805 Dublin (Ireland)
† 02.09.1865 Dunsink (Ireland)

Heisenberg, Werner Karl German physicist
Nobel price 1932
∗ 05.12.1901 Würzburg (Germany)
† 01.02.1976 München (Germany)

Hooke, Robert English physicist
∗ 18.07.1635 Freshwater (England)
† 03.03.1703 London (England)

Hubble, Edwin Powell American astronomer
∗ 20.11.1889 Marshfield (USA)
† 28.09.1953 San Marino (USA)

Huygens, Christiaan Dutch physicist and astronomer
∗ 14.04.1629 Den Haag (Holland)
† 08.07.1695 Den Haag (Holland)

Jacobi, Carl Gustav Jacob German mathematician
∗ 10.12.1804 Potsdam (Germany)
† 18.02.1851 Berlin (Germany)

Joule, James Prescott English physicist
∗ 24.12.1818 Salford (England)
† 11.10.1889 Sale (England)

Joyce, James Augustine Irish author
∗ 02.02.1882 Dublin (Ireland)
† 13.01.1941 Zürich (Switzerland)

Kepler, Johannes German astronomer
∗ 27.12.1571 Weil der Stadt (Germany)
† 15.11.1630 Regensburg (Germany)

de Lagrange, Joseph-Louis comte Italian-French mathematician
∗ 25.01.1736 Turin (Italy)
† 10.04.1813 Paris (France)
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Legendre, Adrien Marie French mathematician
∗ 18.09.1752 Paris (France)
† 10.01.1833 Paris (France)

Lissajous, Jules Antoine French physicist
∗ 04.03.1822 Versailles (France)
† 24.06.1880 Plomblières-les-Bains (France)

Marsden, Sir Ernest English physicist
∗ 19.02.1889 Rishton (England)
† 14.12.1970 Wellington (New Zealand)

Michelson, Albert Abraham American physicist
Nobel price 1907
∗ 19.12.1852 Strzelno (Poland)
† 09.05.1931 Pasadena (USA)

Morley, Edward Williams American chemist
∗ 29.01.1838 Newark (USA)
† 24.02.1923 West Hartford (USA)

Newton, Sir Isaac English physicist and mathematician
∗ 04.01.1643 Woolsthorpe (England)
† 31.03.1727 Kensington (England)

Poincaré, Jules Henri French mathematician and philosopher
∗ 29.04.1854 Nancy (France)
† 17.07.1912 Paris (France)

Poisson, Siméon Denis French mathematician and physicist
∗ 21.06.1781 Pithiviers (France)
† 25.04.1840 Sceaux (France)

Poinsot, Louis French mathematician
∗ 03.01.1777 Paris (France)
† 05.12.1859 Paris (France)

Lord Rayleigh, John William English physicist
Nobel price 1904
∗ 12.11.1842 Langford Grove (England)
† 30.06.1919 Terling Place (England)

Riemann, Bernhard Georg Friedrich German mathematician
∗ 17.09.1826 Breselenz (Germany)
† 20.07.1866 Selasca (Italy)
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Rutherford, Ernest English physicist
Nobel price 1908
∗ 30.08.1871 Brightwater (New Zealand)
† 19.10.1937 Cambridge (England)

Steiner, Jakob Swiss mathematician
∗ 18.03.1796 Utzenstorf (Switzerland)
† 01.04.1863 Bern (Switzerland)

Stokes, Sir George Gabriel English mathematician and physicist
∗ 13.08.1819 Skreen (Ireland)
† 01.02.1903 Cambridge (England)

Taylor, Brook English mathematician
∗ 18.08.1685 Edmonton (England)
† 29.12.1731 London (England)

Walton, Ernest Thomas Irish physicist
Nobel price 1951
∗ 06.10.1903 Dungarvan (Ireland)
† 25.06.1995 Belfast (Ireland)



B The Greek Alphabet

α A alpha
β B beta
γ Γ gamma
δ Δ delta
ε , ε E epsilon
ζ Z zeta
η H eta
θ , ϑ Θ theta
ι I iota
κ K kappa
λ Λ lambda
μ M mu
ν N nu
ξ Ξ xi
o O omicron
π Π pi
ρ # R rho
σ , ς Σ sigma
τ T tau
φ ϕ Φ phi
χ X chi
ψ Ψ psi
ω Ω omega
υ Υ upsilon



C Nomenclature

Symbols

≡ equivalent
≈ approximately equal
∝ proportional to
v vector v

Â matrix A
mod modulo
x · y scalar product of the vectors x and y
x × y vector (cross) product of x and y
gradφ = ∇φ gradient of φ
div f = ∇ · f divergence of f
rotf = ∇ × f rotation (curl) of f

[ ] unit/dimension
O order of an expansion



D Physical Quantities

Table D.1. Systems of Basic Units

Notation Explanation Units

CGS System Centimetre-Gram-Second System cm, g, s

SI System Système Internationale (Metre-Kilogram-Second System) m, kg, s

Table D.2. Prefixes for Powers of Ten

nomenclature symbol powers of ten

tera T 1012

giga G 109

mega M 106

kilo k 103

deci d 10−1

centi c 10−2

milli m 10−3

micro μ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18



Table D.3. Physical units in the CGS- and SI-Systems

Physical Quantity Symbol Units in

CGS-System SI-System

length L cm m

mass M g kg

time T s s

velocity L/T cm/s m/s

acceleration L/T2 cm/s2 m/s2

force ML/T2 g cm/s2 = kg m /s2 =

dyn N

momentum ML/T g cm/s = kg m /s =

dyn s N s

energy, work ML2/T2 g cm2/s2 = kg m2/s2=

dyn cm = erg N m = J

power ML2/T3 g cm2/ s3 = kg m2/s3 =

dyn cm/s J/s=W

volume L3 cm3 m3

density M/L3 g/cm3 kg/m3

angle – rad rad

angular velocity 1/T rad/s rad/s

angular acceleration 1/T2 rad/s2 rad/s2

torque ML2/T2 g cm2/s2 kg m2/s2

angular momentum ML2/T g cm2/s kg m2/s

moment of inertia ML2 g cm2 kg m2

pressure M/(LT2) g/(cm s2)= kg/(m s2)=

dyn/cm2 N/m2
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Table D.4. Some Conversion factors I

Physic. Unit Symbol Value in

Quantity Unit other Unit

length 1 kilometre km 1000 m

1 metre m 100 cm

1 centimetre cm 10−2 m

1 millimetre mm 10−3 m

1 micrometre μm 10−6 m

1 nanometre nm 10−9 m

1 Ångstrøm Å 10−10 m

area 1 square kilometre km2 106 m2

1 square metre m2 104 cm2

1 ar a 102 m2

volume 1 litre l 1000 cm3

1 cubic metre m3 1000 l

mass 1 kilogram kg 1000 g

1 ton t 1000 kg

velocity 1 kilometre per hour km/h ≈ 0.2778 m/s

density 1 gram per g/cm3 103 kg/m3

cubic centimetre

force 1 dyne dyn 1 g cm/s2

1 kilopond kp 9.807 N

1 Newton N 105 dyn=

0.10197 kp
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Table D.5. Some Conversion Factors II

Physic. Unit Symbol Value in

Quantity Unit other Unit

energy 1 Joule J 1 Nm=107erg

=0.2389 cal

1 kilo calorie kcal 1000 cal =

4184 J

1 kilowatt hour kWh 3.6·106 J =

859.8 kcal

1 electron volt eV 1.602 ·10−19 J

power 1 watt W 1 J/s=

107 erg/s =

0.2389 cal/s

1 horse power PS 75 kp m/s =

735.5 W

1 kilowatt kW 1.360 PS

pressure 1 N/m2 =

10 dyn/cm2

1 bar bar 105 N/m2

1 phys. atmosphere atm 1.013 bar

1 torr 1/760 atm

1 techn. atmosphere at 1 kp/cm2=

0.9807 bar

1 hectopascal hPa 100 N/m2 = 103 bar

angle 1 radian rad ≈ 57.2958◦

1◦ 0.017453 rad
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E Some Constants and Astronomical Data

Table E.1. Constants

Name Symbol Value

universal gravitational constant γ 6.674 · 10−8 cm3/(g s2)

mean gravitational acceleration g 9.81 m/s2

at the surface of the earth

velocity of light c 2.997925 · 108 m/s

The numbers are adapted from R.Wielen (ed.): ’Planeten und ihre Monde’
(Spektrum Akademischer Verlag, Heidelberg, 1997)
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Table E.2. Astronomical Data I

Mass kg

Sun 1.99 · 1030

Earth 5.98 · 1024

Moon 7.35 · 1022

Jupiter 1.90 · 1027

Saturn 5.68 · 1026

Venus 4.87 · 1024

Mars 6.42 · 1023

Radius (mean) km

Sun 6.96 · 105

Earth 6.37 · 103

Moon 1.74 · 103

Jupiter 7.15 · 104

Saturn 6.03 · 104

Venus 6.05 · 103

Mars 3.40 · 103

Radius of Orbit (mean) km

Earth 1.50 · 108

Moon 3.84 · 105

Jupiter 7.78 · 108

Saturn 1.43 · 109

Venus 1.08 · 108

Mars 2.28 · 108

Period of Rotation (axis, mean) s

Earth 8.62 · 104

Moon 2.36 · 106

Jupiter 3.53 · 104

Saturn 3.88 · 104

Venus ≈ 2.1 · 107

Mars 8.83 · 104



Table E.3. Astronomical Data II

Gravitational Acceleration (mean) m/s2

Earth 9.81

Moon 1.63

Jupiter 24.82

Saturn 10.45

Venus 8.87

Mars 3.70

Period (orbital, mean ) s

Earth 3.16 · 107

Moon 2.36 · 106

Jupiter 3.76 · 108

Saturn 9.31 · 108

Venus 1.96 · 107

Mars 5.93 · 107
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F Formulae

F.1 Plane Polar Coordinates

Definition

x = r cosϕ y = r sinϕ

Length of a vector r

r(t) = [x2(t) + y2(t)]1/2

Angle between r and x -axis

ϕ(t) = arctan
y(t)
x(t)

r(t) = r(t)er(t)

v(t) = ṙ er + rϕ̇ eϕ = vr er + vϕ eϕ

vr: radial velocity
vϕ: azimuthal velocity

a(t) = (r̈ − rϕ̇2)er + (2ṙϕ̇ + rϕ̈)eϕ = ar er + aϕ eϕ

ar: radial acceleration
aϕ: azimuthal acceleration

er(t) = cosϕ(t)ex + sinϕ(t)ey

eϕ(t) = − sinϕ(t)ex + cosϕ(t)ey

ex = cosϕ(t)er(t) − sinϕ(t)eϕ(t)
ey = sinϕ(t)er(t) + cosϕ(t)eϕ(t)

dxdy = r dr dϕ
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F.2 Cylinder Coordinates

x = ρ cosϕ y = ρ sinϕ z = z

ρ =
√

x2 + y2 ϕ = arctan
y

x
z = z

r(t) = ρ eρ(t) + z ez

v(t) = ρ̇ eρ(t) + ρϕ̇ eϕ(t) + ż ez

a(t) = (ρ̈ − ρϕ̇2)eρ(t) + (ρϕ̈ + 2ρ̇ϕ̇)eϕ(t) + z̈ ez

r(t) =
√

ρ2 + z2

v(t) =
√

ρ̇2 + ρ2ϕ̇2 + ż2

a(t) =
√

(ρ̈ − ρϕ̇2)2 + (ρϕ̈ + 2ρ̇ϕ̇)2 + z̈2

eρ(t) = cosϕ(t)ex + sinϕ(t)ey

eϕ(t) = − sinϕ(t)ex + cosϕ(t)ey

ez(t) = ez

ex = cosϕ(t)eρ(t) − sinϕ(t)eϕ(t)
ey = sinϕ(t)eρ(t) + cosϕ(t)eϕ(t)
ez = ez(t)

dxdy dz = r dρdϕdz

F.3 Spherical Coordinates

x = r cosϕ sin θ

y = r sinϕ sin θ

z = r cos θ

r =
√

x2 + y2 + z2 ϕ = arctan
y

x
θ = arctan

√
x2 + y2

z

v(t) = ṙ er + rθ̇ eθ + rϕ̇ sin θ eϕ
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a(t) = er

(
r̈ − rθ̇2 − rϕ̇2 sin2 θ

)
+eθ

(
rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ

)
+eϕ

(
rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ϕ̇ cos θ

)

er = (sin θ cosϕ)ex + (sin θ sinϕ)ey + (cos θ)ez

eθ = (cos θ cosϕ)ex + (cos θ sinϕ)ey + (− sin θ)ez

eϕ = − sinϕ ex + cosϕ ey

ex = (sin θ cosϕ)er − sinϕ eϕ + (cos θ cosϕ)eθ

ey = (sin θ sinϕ)er + cosϕ eϕ + (cos θ sinϕ)eθ

ez = cos θ er − sin θ eθ

dxdy dz = r2 dr sin θ dθ dϕ

F.4 Sum Formulae / Moivre Formula

x, y real

sin(x ± y) = sinx cos y ± cosx sin y

cos(x ± y) = cosx cos y ∓ sinx sin y

tan(x ± y) =
tanx ± tan y

1 ∓ tanx tan y

sin 2x = 2 cosx sinx =
2 tanx

1 + tan2 x

cos 2x = cos2 x − sin2 x =
1 − tan2 x

1 + tan2 x

tan 2x =
2 tanx

1 − tan2 x

a = x + iy = |a|(cosϕ + i sinϕ)

an = (|a|(cosϕ + i sinϕ))n = |a|n(cosnϕ + i sinnϕ) = |a|neinϕ
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cosϕ =
1
2
(
eiϕ + e−iϕ

)
sinϕ =

1
2 i

(
eiϕ − e−iϕ

)
eiϕ = cosϕ + i sinϕ

F.5 Hyperbolic Functions

sinhx =
1
2
(ex − e−x)

coshx =
1
2
(ex +e−x)

tanhx =
(ex − e−x)
(ex +e−x)

F.6 Series Expansions

sinx =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!

cosx =
∞∑

n=0

(−1)n x2n

(2n)!

ex =
∞∑

n=0

xn

n!

(1 ± x)n = 1 ±
(

n
1

)
x +

(
n
2

)
x2 +

(
n
3

)
x3 + . . . |x| ≤ 1

(
n
m

)
=

n(n − 1) . . . (n − m + 1)
m!

F.7 Approximations (δ small)

(1 ± δ)α ≈ 1 + α δ

eδ ≈ 1 + δ

ln(1 + δ) ≈ δ

sin δ ≈ δ

cos δ ≈ 1 − 1
2
δ 2

tan δ ≈ δ



2.1 Vertical projectile motion

The discussion of the one dimensional motion of a mass point under the
influence of a constant gravitational acceleration is simple. The discussion is
more involved, if the simultaneous motion of two mass points is considered.
They start upwards at different times with different velocities. The task is
the calculation of the time of ascent, the maximal height, the time and the
position at which the mass points meet (if they do) and some velocities.

2.2 A comparison of the motion of two objects

The velocity and the acceleration of a mass point can be obtained if the time
development of its position is given. In the present exercise, all the details of
the motion of two objects in a one dimensional world are to be analysed and
compared.

2.3 Projectile motion

One of the classical problems of mechanics is the discussion of projectile
motion on the flat earth. Questions concerning the range of the projectile,
the maximum height of the trajectory, the velocity at impact etc. are to be
answered in the present exercise.

2.4 Variation of the problem of projectile motion

The discussion of projectile motion on the flat earth is more complicated if
the target point is above the ground. The structure of the present problem
differs for this reason from the structure of the previous problem (Probl. 2.3).
Nonetheless, the same kind of information concerning the maximum height,
the velocities at different point of the trajectory etc. is obtained here. It is
suggested that you also approach the present problem in the same manner
as the previous one (even if no guidance is offered).
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2.5 Problems of Motion: Initial Conditions

The specification of the acceleration and of the initial conditions allows the
calculation of the actual trajectory of a point particle. The variation of the
pattern of the motion with different initial conditions is investigated in the
present exercise. It only requires the discussion of simple curves in three space
dimensions (R3).

2.6 Motion on a planar spiral

Two coupled differential equations in Cartesian coordinates define the present
problem of motion in a plane. It can be demonstrated, that the calculation
of the trajectory is much simpler if polar coordinates are used. The actual
task is the characterisation of the trajectory and a detailed discussion of the
time development of the motion.

2.7 Discussion of the cardioid

The calculation of the lengths of arcs and of areas enclosed by planar curves
is the task in this exercise. Given is the parametric representation of a heart-
shaped curve, the cardiod, in terms of Cartesian as well as polar coordinates.
Next to the calculation of the area and the circumference, there is a message
in the comparison of the parametric representations of the cardiod with the
representation by an implicit function.

2.8 Calculation of the area of a Lissajous figure

Areas, which are fully enclosed by a planar curve, can be determined by
tracing their boundary. This technique is used here to determine the area en-
closed by a Lissajous figure. The accompanying applet allows the production
and investigation of a much larger variety of these fascinating figures.

2.9 Kinematics of a Lissajous Ellipse

Even a set of simple differential equations can lead to a relatively complicated
time development of the motion of a mass point. In this exercise the motion
on a Lissajous ellipse is investigated in some detail using Cartesian as well
as polar coordinates.
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2.10 Cartesian and spherical coordinates

The relation between the basis vectors of a Cartesian coordinate system
and the local basis vectors of spherical coordinates has been discussed in
Chap. 2.4.2. Two alternative approaches for the determination of these rela-
tions are studied in this problem.

2.11 Elliptical coordinates

Local coordinate systems can be found for every family of orthogonal curves
(2 dimensions) or orthogonal surfaces (3 dimensions). A useful system in
two dimensions, the elliptical coordinates, is generated by sets of orthogo-
nal hyperbolae and ellipses. These coordinates are introduced in the present
problem.

3.1 Analysis of a parallelogram of forces

The geometry of a parallelogram of forces is analysed in this problem. It is
created by a lantern, standing in for a mass point, which hangs from a slack
suspension wire between two posts. Only basic knowledge of trigonometry
and vector calculus is required for the solution of this exercise.

3.2 The inverse force problem: frictional forces

A force, which acts on a mass point, can be determined if the trajectory is
known. The task set in this problem is the analysis of all the details of the
motion and of the acting force for a given planar trajectory.

3.3 The motion of a rocket

A rocket is a prime example of a system characterised by a time dependent
mass. In establishing the equations of motion of a rocket one can encounter
difficulties. The situation has to be analysed with sufficient care. The deriva-
tion of the equation of motion of a rocket, with simplifying assumptions for
the ejection of the combustion products, is the task in this problem.
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3.4 The ’force-free’ rocket

The simplest example for the motion of a rocket is the so-called ’force-free’
motion. The rocket is only subjected to the thrust of the combustion products.
The solution of the corresponding equation of motion allows the calculation
of the time dependence of the mass, of the velocity and of the kinematic
energy of the rocket. All these quantities are calculated and discussed in the
present exercise.

3.5 A rocket moving in a uniform gravitational field

The solution of the equation of motion of a rocket is still rather simple if
the rocket moves upwards in a uniform gravitational field. The task in this
exercise is the calculation of the height above ground and the velocity as a
function of time.

3.6 Pirouettes

Angular momentum conservation explains the change of the angular velocity
during a pirouette. The present problem is slightly more involved. A rotating
mass is pulled towards the centre of a circle by a central force. The dynam-
ical aspects (trajectory, forces, work) which govern this motion are to be
calculated.

3.7 Angular momentum and projectile motion

Projectile motion of a mass point can be viewed as a part-rotation with re-
spect to the initial position, the origin of the coordinate system. The concepts
involved in the description of rotational motion are to be recapitulated here
via the discussion of this simple planar problem.

3.8 Questions concerning a ballistic pendulum

The ballistic pendulum constitutes a simple example for the application of
conservation laws. This device is introduced here with 10 explicit questions
concerning its possible use. There is a pattern for finding the correct answers.
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3.9 Forces acting in a linear chain of barges

A chain of barges (objects), each with a different mass, is pulled by a tug
boat (the agent of the motion). The forces acting on each of the barges in the
chain can be determined with the aid of the individual equations of motion.
Frictional effects can not be neglected. Given the forces, the work situation
can be analysed.

3.10 A ball and a point particle on a track with a loop

The principle of energy conservation allows a partial analysis of simpler prob-
lems of motion. The example of Chap. 3.2.3.3 – a point particle moves under
the influence of gravity without friction on a track with a circular loop – can
be discussed in this fashion. A comparison of the motion of the point particle
with the motion of a rolling ball offers additional insights.

3.11 Work done along a trajectory in R3

The task of this exercise is the calculation of the trajectory of a point particle
in a time dependent field of force. Once the trajectory is known, the energy
transferred to the particle during a specified interval of time can be obtained.

3.12 Work through gravitation

Some machines work with pulleys and weights. In this machine a mass m is
moved along the horizontal by the action of the gravitation on a mass M ,
which is connected to m by a pulley. The situation of the work supplied by
gravity is to be analysed.

3.13 Forces induced by a falling chain

A moving mass, which hits a wall, exerts a force on the wall by transfer of
momentum. In the present example a section of a chain has fallen on some
scales under the action of gravity, while the remainder is still underway. The
question is: What is the apparent weight of the section of the chain, including
the effects of the dynamical force?
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3.14 The inverse force problem: central forces

Newton has been able to determine the law of gravitation using Kepler’s
summary of planetary motion. The extraction of a force law can be carried out
quite elegantly, if the equation of the trajectory is given explicitly. The task
set in this problem, following in the footsteps of Newton, is the calculation
of three forces on the basis of the specification of three trajectories.

3.15 The gravitational potential of a hollow sphere

The calculation of potential energies, or potentials, for a given mass or charge
distribution, is a standard task of Theoretical Physics. The present exercise
deals with the gravitational potential of a hollow spherical mass distribution.
The solution of this problem allows, in addition, an explicit verification of
the principle of superposition.

3.16 Gravitational field of a spherical cavity embedded
in a sphere

The calculation of the (gravitational) field for a more complicated geometry
can be tedious, if one relies on the evaluation of the integrals for the three
field components. The present exercise addresses such an example: the field
of a spherical cavity embedded in a sphere. This field can be obtained readily
by application of the principle of superposition.

3.17 The action of gravitation in a tunnel through the
earth

This somewhat futuristic problem can be found in many introductory texts
of physics. A straight tunnel through the Earth connects two towns with a
sufficiently large separation (here Frankfurt and San Francisco). The task is
the discussion of the motion of a mass point along the tunnel. Even though
it is not easy to determine the force that acts on the mass, the final answer
is quite simple, as the tunnel constrains the motion. Who is able to guess the
answer?

3.18 Motion in an exponential potential

The principle of energy conservation is the first integral of the equations of
motion. It is, for this reason, possible to extract a differential equation of first
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order from the specification of the potential energy, provided one deals with
a problem in one space dimension. The equation of motion of a mass point
in an exponential potential and its solution are to be discussed in the present
problem.

3.19 Elastic collisions

The simplest (classical) two body collision problem is the central, elastic
collision. The basic formulae, which allow the calculation of the final velocities
of two colliding mass points for a given set of initial velocities and masses
can be obtained from the laws of energy and momentum conservation. The
equations, relating final and initial velocities, are derived here. They are then
applied to a selection of situations.

4.1 Masses of celestial bodies with Kepler’s third law

An application of Kepler’s third law allows the determination of the masses
of central bodies from the data of their moons. This task is to be carried out
in the present example for the mass of Earth and of Saturn. By the processing
of standard astronomical data a feeling for their accuracy can be obtained.
The data provided are taken from

R. Wielen (ed.), ’Planeten und ihre Monde’
Spektrum Akademischer Verlag, Heidelberg (1997)

Warning: Variations of the values of astronomical data from different sources
are often encountered.

4.2 Stable circular orbits of central forces

The question, whether a central force in the form of a power law can support
stable circular orbits, can be answered by different methods. A simple and
direct answer can be obtained with a cursory look at the expected trajectory
and an analysis of the corresponding potential energy.

4.3 Geostationary and planetostationary orbits

Satellites stay above the same point of the equator of the uniformly rotating
earth, if they are on a geostationary orbit. An equation, which connects
the radius of this orbit with the frequency of the earth’s rotation can be
obtained either via conservation laws or via a consideration of the forces.
Some representative numbers will be calculated.
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4.4 A comet traverses the orbit of the earth

The sighting of a comet raises the question whether and for how long it will
travel within the orbit of the earth. The question concerning the duration of a
possible transit will be answered in this exercise within a simplified scenario.
Techniques as application of conservation laws and integration of a radial
equation of motion are the tools to be used in this modified Kepler problem.

4.5 A parametric representation of the Kepler
hyperbolae

A parametric representation of the coordinates and of time for the motion on
a Kepler ellipse has been presented in Chap. 4.1.2.6. A corresponding repre-
sentation can be found for the motion of comets (parabolae and hyperbolae).
The determination and discussion of the parametric representation of Kepler
hyperbolae is the aim of this exercise.

4.6 A Kepler-type problem: the 1/r2-potential

An answer to the question, which trajectories could be expected, if the central
potential obeys a power law different from that of the Kepler problem, is not
easy. Instead of the general case, the trajectories of the 1/r2-potential are
investigated in this exercise in detail. The technical aspects do not differ
from those of the Kepler problem.

4.7 Details of the classical collision problem

This exercise addresses once more the motion of comets by an explicit solution
of the Kepler problem for positive initial energies. It involves the derivation of
the formulae necessary for the discussion of the classical problem of a collision
of a small by a large mass (Chap. 4.1.3.2). One example of such formulae is
the derivation of the central relation between the impact parameter and the
scattering angle.

4.8 Scattering by a potential step: the scattering angle

The scattering of a particle (mass point) from a spherical potential step is a
central force problem. The same techniques that are used in the solution of
this problem, can be applied to the discussion of the relative motion of two
colliding particles with a corresponding interaction. The motion of the (effec-
tive) particle can be traced explicitly in this classical mechanics problem, so
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that useful insights into a collision situation can be gained. The solution of
the problem outlined will be treated in some detail. The first part addresses
the dependence of the scattering angle on the impact parameter. The extrac-
tion of cross sections is the task set in the companion problem, Probl. 4.9.
It is worth noting that the corresponding quantum problem can be found in
most quantum mechanics texts (e.g. Vol. 3 of this series).

4.9 Scattering by a potential step: cross sections

The discussion of the scattering of one particle by a potential or the collision
of two particles with a corresponding interaction is essentially identical. The
results obtained in the previous problem, Probl. 4.8, for the relation between
the scattering angle and the impact parameter will be used here to calculate
and discuss the differential and total cross sections. Can you guess the result
for the total cross section?

4.10 The collision problem in the laboratory and the
centre of mass systems

A question that arises in the discussion of collision experiments is the con-
nection of experiment (which is carried out in the laboratory system) and
theory (which relies on the centre of mass system, as for example for the
Rutherford formula of Chap. 4.1.3.2). This statement applies to the collision
of two masses (in classical mechanics) as well as the collision of charges (in
electrodynamics and quantum mechanics). In order to compare experimen-
tal data with theoretical differential cross section a relation that allows the
conversion between the two reference systems, is needed. The derivation of
this relation is a must for every student of physics.

4.11 Calculation of effective spring constants

Hooke’s law is the basis for the discussion of oscillating mass-spring systems.
Simpler models (see Chap, 6.1) are a chain with alternating springs and
masses, which oscillate in the longitudinal direction. However, more compli-
cated arrangements of springs between masses can be imagined. The effective
spring constants of two basic arrangements of springs as well as of some com-
binations of the basic arrangements are investigated in the present exercise.
The results of an electro-technical problem, the combination of electric resis-
tors (instead of springs), are quite similar.
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4.12 The fast mathematical pendulum

The mathematical pendulum is a favourite example for the illustration of
a more complicated periodic motion which is obtained as the solution of a
non-linear differential equation. In most cases the treatment is restricted to
the case of a maximal displacement smaller than 180◦. The full rotation of
the pendulum is treated and discussed in this exercise.

4.13 The cycloid pendulum of Huygens

The period of a mathematical pendulum is a function of the maximum dis-
placement. Frictional effects, which lead to a change of the maximum displace-
ment, can not be avoided during its operation. This pendulum is therefore
not an ideal instrument for the precise measurement of the time. Christian
Huygens has already suggested an alternative in the 17th century, the cy-
cloid pendulum, The discussion of this pendulum is the topic of the present
exercise. A number of different cycloids are presented before the equation
of motion characterising Huygens’ pendulum is established. The practical
implementation of this apparatus can then be checked with modern means.

4.14 Energy loss of the damped harmonic oscillator

The calculation of the energy loss of a damped harmonic oscillator involves
basically the evaluation of integrals over the square of the velocity of the
’oscillating’ mass. This (essentially technical) exercise is carried out for the
three forms of motion of the damped oscillator. Comments on the results are
required.

4.15 An initial value problem: the forced oscillator

The discussion of the differential equation of the forced damped oscillator
is an initial value problem, in which the general solution of a homogeneous
linear differential equation has to be matched to a special solution of an
inhomogeneous differential equation. The classical damped oscillator is driven
in this exercise by a harmonic force.

5.1 Problems with constraints: the upright wheel

The upright wheel is an example of a system which can not be characterised
by holonomic constraints. The present problem deals with a strictly upright
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wheel. The more realistic problem of a wheel that can tilt over is more in-
volved, as an additional degree of freedom comes into play. The proof that
the motion of the upright wheel is not compatible with holonomic constraints
leads quite naturally to the formulation of the relevant nonholonomic con-
straints.

5.2 Constraints: the moving plane

The problem of a mass point moving under the influence of gravity on a
moving plane has been indicated in Chapter 5.1.2.5. This problem should be
discussed in independently in this exercise, in particular, as the consideration
of additional points will help to gain a better understanding of rheonomic
problems.

5.3 Constraints: another free fall machine

The original form of Atwood’s machine is varied, though only slightly, in
this exercise. This problem with constraints can be treated with standard
methods.

5.4 Constraining forces of a planar guide rail

The motion of objects along a given curve (e.g. a mass point in a plane) can
be treated with the Lagrange equations of the first kind. The first step is the
determination of the constraining forces. The next step, the solution of the
resulting equations of motion has to be approached by numerical means in
most cases. The task of the present problem is restricted to the analysis of
the constraining forces of two guiding rails and answers to explicit questions
concerning their effect on the motion.

5.5 Constraints: the crank mechanism

The crank mechanism, which is used in many machines for the transmission
of power, is a system with constraints. By analysis of these constraints one is
able to understand the interplay between the forces in different parts of this
device. Basis of the discussion is the principle of d’Alembert.
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5.6 Motion in a crank mechanism

The crank mechanism is a system with constraints. The motion of two points
in such a device is analysed in this exercise. Of particular interest are the
limiting cases of a long drive rod in comparison with the radius of the crank
wheel as well as the case that the length of the drive rod equals the radius
of the crank wheel. Can you guess the form of the motion in these limiting
cases without an explicit calculation.

5.7 Motion on a ’breathing’ cylinder

The motion of a mass point on the surface of a cylinder with a given radius
under the influence of a harmonic restoring force has been treated in Chap-
ter 5.3.1.4. A possible variant of this holonomic problem addresses rheonomic
constraints: the mass moves on a cylinder with a time dependent radius. The
equations of motion and their solution are discussed for the general case and
applied to an explicit example, a pulsating cylinder.

5.8 Solution of the Kepler problem with Lagrange

The standard solution of the Kepler problem is based on Newton’s equations
of motion. The approach to this problem on the basis of the Lagrange formal-
ism provides an interesting alternative. It actually leads to the discussion of
an oscillator problem. In the end there appears, naturally, the same solution

5.9 A driven mathematical pendulum: Planar movement
of the point of suspension

The discussion of the motion of a mathematical pendulum for which the point
of suspension moves on an ellipse, is a problem with holonomic/rheonomic
constraints. Problems of this kind can be treated in terms of the Lagrange
equations of the second kind. The resulting equations of motion can, however,
not be solved analytically. This is the reason why only the formulation of
the equation of motion is required in this exercise. The structure of this
differential equation is discussed for some special cases. In addition, it is
of interest to observe that the action of gravitation can be simulated by a
circular motion of the point of suspension.
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5.10 A rotating mathematical pendulum

The discussion of the mathematical pendulum can be varied in many ways.
For example, the point of suspension can rotate with a constant angular ve-
locity. Experiments indicate that stable equilibrium positions of the angle
between the vertical and the rod of the pendulum occur. The calculation
and discussion of these angles will be undertaken here. Harmonic oscillations
about the stable configurations can be expected for small initial displace-
ments. The frequencies of these oscillations should be determined as well.
The present problem has some similarity with the spherical pendulum. Does
this help in finding a direct access?

6.1 The Short Asymmetric Oscillator Chain

A linear chain of masses and springs represents a basic model of an interacting
(via next neighbours) many particle system. A general analytic solution can
be obtained in the case of equal masses and equally strong springs, even for
very large systems. The solution of the problem is more tedious, if the masses
and the springs are different. The detailed discussion of the classical problem
of longitudinal oscillations of a system with two different masses connected
by three different springs is the task of this problem.

6.2 A pendulum in the form of a V

Oscillating systems with one mass and two springs need not be arranged in
a linear manner. The somewhat more complicated geometry in this problem
is produced by a symmetric arrangement of two identical springs in the form
of a V. The discussion centres on small vertical oscillations of the mass. The
derivation of the correct linear approximation is not a trivial task in this case.

6.3 The planar double pendulum, with and without
springs

The double pendulum is a good example for the occurrence of chaotic motion
through the non-linear coupling of the motion of two masses. The task set
here is the derivation and the discussion of the corresponding equations of
motion rather than their solution. The variants which can be discussed are,
for example,

• a pendulum with the sequence of elements ’point of suspension-rigid rod-
mass-rigid rod-mass’

• or the replacement of any or of all of the rods by a spring.
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The technical steps involved in this derivation are basically elementary, but
they do require a certain amount of ’mathematical stamina’. The intricate
motion of the pendulum can be studied in the accompanying applet.

6.4 Projectile motion on the rotating earth

The description of the motion of objects from the point of view of the rotating
earth has to include apparent forces, in particular the Coriolis force. Projectile
motion can serve as a proof of the earth’s rotation in the same way as the
simpler free fall motion or the Foucault pendulum. The effects of the pseudo
forces ’acting’ during the projectile motion are especially noticeable for larger
distances and velocities.

6.5 The rotating fountain

A circular fountain is equipped with four (or more) nozzles. Four jets of
water emanate and meet at the centre of the circle. The question, which is
discussed in this problem, is: how would the jets behave if the fountain is
rotating uniformly. It is necessary to model the jets in a simple fashion in
order to answer this question. Besides the correct approach, involving both
the Coriolis and the centrifugal forces, an artificial problem with exclusion
of centrifugal effects is discussed. This problem is considered in order to
highlight the nature of apparent forces.

6.6 Inertia matrix: cuboid and ellipsoid

The knowledge of the inertial properties of some basic objects is necessary
for a physicist. The evaluation of the elements of the matrix of inertia is an
exercise in triple integration. It involves the question of suitable substitutions
with optimal variables of integration. Some basic rigid bodies are the cuboid
and ellipsoid with a homogeneous density distribution which are considered
here.

6.7 Inertia matrix: miscellaneous spheres

It is not sufficient to calculate only the elements of the inertia matrix for
homogeneous objects. The inertial behaviour of objects with a more compli-
cated density distribution is also required in many instances. This topic is
treated here with the calculation of the inertia matrix of three objects with
a spherical shape. The density distribution varies with the angles in two of
the cases, the third case deals with a hollow sphere.
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6.8 Inertia matrix: a selection of objects

The effort involved in the calculation of moments of inertia can often be
reduced with a little reflection. The three objects considered in this problem
are often encountered in the application of the theory of rigid bodies.

6.9 Rotation of a disc: the load on the bearing

The discussion of the rotation of rigid bodies generally calls for a more ex-
tensive calculation. The following problem can, however, be discussed much
more simply if the proper set of equations and the correct choice of the system
of reference is used.

6.10 A cylinder on an inclined plane

A popular problem with constraints is the motion of a point particle on an
inclined plane. This problem can be varied. In the present case the mass point
is replaced by a rolling cylinder. The rolling cylinder has to be characterised
by more constraints as additional degrees of freedom are involved (can you
say how many?). A comparison of the forces and of the motion of the two
’objects’ will naturally be included.

6.11 Stability of the rotation of a force-free, asymmetric
top

The calculation and the discussion of the motion of an asymmetric top
(whether force-free or not) is not simple. The time development of the vector
of the rotational velocity and of the Euler angles can be represented in terms
of elliptical integrals. It is nonetheless not easy to picture the actual motion
of the top. One question can, however, be answered with modest means: The
question of whether the rotation about any of the three different principal
axes of the force-free, asymmetric top is stable or not.

6.12 The rolling circular cone

It is not easy to visualise the rotational motion of a rigid body. The following
discussion of a rolling circular cone is meant to help the imagination. The
key points for the solution of this problem are an optimal choice of a body
fixed system and an appropriate sorting of the angles and axes of rotation
which are used to describe the rotation.
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acceleration, 22

– angular, 301

– average, 22

– azimuthal, 56

– central, 45, 50, 57

– centripetal, 45

– gravitational, 22, 70

– instantaneous, 22

– radial, 56

– vector, 42

action principle, 254

addition theorem

– velocities, 74

amplitude, 16, 29

angular acceleration, 301

angular frequency, 16, 29

angular momentum, 91

– conservation, 93, 99

– in Kepler problem, 150

– principle, 93, 98

apparent forces, 75, 295

– on rotating earth, 305

– in rotating systems, 297

areal

– velocity, 49

areas

– calculation of, 50

– conservation law of, 49

attractor basin, 266

Atwood’s machine, 212

axis of symmetry, 341

azimuthal

– acceleration, 56

– velocity, 55

beat, 276

binormal vector, 43

Cartesian leaf, 48
– calculation of area, 53
– velocity vector, 52
central
– acceleration, 45, 50, 57
– field, 104, 118
– force field, 120
– forces, 57, 79, 94, 104, 118, 120, 141,

238
centre of gravity, see centre of mass
centre of mass, 84
– momentum, 85
– system, 88
– velocity, 85
centrifugal force, 300
centrifugal moment, 320
centripetal acceleration, 45
Chandler period, 345
chaotic motion, 266
circular frequency, 16
collision
– elastic, 131
– inelastic, 133
collision problems
– characterisation, 157
– differential cross section, 159
– discovery of neutron, 136
– impact parameter, 158
– Rutherford formula, 160
– scattering angle, 158
comet
– Halley’s, 148
– orbit, 157
cone
– body fixed, 344
– space fixed, 344
configuration space, 246
conic sections, 145
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– ellipse, 145
– hyperbola, 146
– Kepler’s problem, 148
– parabola, 145
conservation law
– of angular momentum, 93
– of areas, 49
– of energy, 111, 115, 125, 126
– of momentum, 85
constraining forces, 115, 162, 167, 186,

187
constraints, 186
– classification, 196
– holonomic-rheonomic, 197
– holonomic-scleronomic, 196
– mixed, 211
– nonholonomic, 198
– one-sided, 199
coordinate systems
– accelerated, 75
– body-fixed, 317, 320
– inertial, 75
– origin of, 15
– rotating, 294
– space-fixed, 317
coordinates
– confocal elliptic, 60
– curvilinear, 54, 60, 62
– cyclical, 232
– cylinder, 60
– generalised, 215
– ignorable, 216
– normal, 273
– plane polar, 54
– spherical, 62
Coriolis force, 300, 308
Coulomb’s law, 80
cycloid, 252

D’Alembert’s principle, 204, 209
damped oscillator
– aperiodic limit, 170
– energy loss, 171
– phase space portrait, 265
– strong damping, 171
– weak damping, 170
degree of freedom, 188
delta function, 288
differential equations

– coupled, 38
– coupled oscillators, 280
– explicit, 27
– forced oscillations, 172
– harmonic oscillator, 23, 26
– Kepler’s problem, 141
– mathematical pendulum, 162
– principle of superposition, 180
– separation of variables, 39
– variation of constant, 173
differential operator
– rot (curl), 116–118, 123
– grad, 117
dumb-bell, 100
– moment of inertia, 100

eccentricity, 78
eigen-
– frequency, 172, 274
– modes, 273
– value problem, 279, 327
elliptic integral
– complete, 166
– first kind, 235, 350
– incomplete, 165
energy
– centrifugal, 149
– conservation, 111, 117, 125
– kinetic, 104, 126
– kinetic, rotational, 318, 333
– kinetic, translational, 318
– potential, 111, 124, 126, 188
– potential, effective, 149, 235, 348, 350
– potential, of mass distribution, 127
– principle, 111
equation
– characteristic, 169, 281, 288, 327
– secular, 169
equations of motion
– Euler, 337, 340, 341, 346
– Hamilton’s, 255
– Lagrange I, 193
– Lagrange II, 219, 244
– planetary motion, 141
– rotating coordinate system, 299
equilibrium point, 263
Euler
– angles, 334
– equations of motion, 340
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Euler-Lagrange
– variational equation, 248
exponential function, 17

Feynman diagram, 82
field
– central, 104, 118
– conservative force, 113, 116
– force, 102
– gravitational, 103
– gravitational, earth, 130
– vector, 102
focus, 266
forced oscillations
– amplitude, 173, 176
– differential equation, 172
– eigenfrequency, 172
– half width, 177
– phase, 173, 178
– quality factor, 177
– resonance, 176
– resonance frequency, 177
forces, 67
– apparent, 75, 295
– central, 57, 79, 94, 104, 118, 120, 141,

238
– centrifugal, 300
– conservative, 113, 116, 118, 126
– constraining, 115, 162, 167, 186, 187
– Coriolis, 300, 308
– field, 102
– frictional, 117
– generalised, 218
– gravitational, 70
– internal, 122
– internal, conservative, 123
– lost, 208
– magnetic, 80
– nonconservative, 117
Foucault pendulum, 311
Fourier series, 181
frame of reference, 73
free fall
– easterly deviation, 309
– from rest, 14, 20
– in parabolic tub, 203
– on inclined plane, 190, 199
– on moving inclined plane, 200
– on rotating earth, 307

– projectile motion, 28, 38
– southerly deviation, 309
– with friction, 18, 21
frequency, 16
– angular, 16, 29
– circular, 16
– normal, 274
friction
– Stokes’, 18, 24, 266
function
– delta, 288
– exponential, 17
– extended Lagrange, 244
– Hamilton, 236
– homogeneous, 237
– Lagrange, 229
functional, 247

Galilei transformation, 73
geoid, 307
gradient of scalar field
– ∇, 117
gravitational
– acceleration, 22, 70
– constant, 70, 79
– field, 103
– force, 70, 79, 140
– mass, 70
– potential, 120
– potential, of mass distribution, 127

Hamilton
– equations of motion, 255
– function (Hamiltonian), 236
– principle, 246, 253
harmonic oscillator, 16, 21, 23, 110,

160, 260
– anisotropic, 118
– damped, 169
– forced, 172, 174
– isotropic, 120
helix
– motion on, 223
hodograph, 45

inclined plane problem
– differential equation, 189
– free fall, 190
– initial conditions, 189
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inertia
– ellipsoid, 329
– matrix, 320
– matrix, examples, 322
– principal axis, 325
– principal moment, 325
– tensor, 320
inertial system, 75
initial conditions, 38, 186, 262, 266
initial value problem, 25
interaction, 77

Kepler problem, 139
– many body problem, 153
– angular momentum, 150
– meteorites, 155
– motion of the sun, 151
– one body limit, 141
– orbital equation, 144
– orbits of comets, 157
– parametrisation of orbit, 153
– planetary motion, 141
– third Kepler law, 150
– two body problem, 151
Kepler’s laws, 77, 150
kinetic energy, 104
knot, 266

Lagrange bracket, 260
Lagrange I, 192
– constraints, 192
– equations of motion, 193
– Lagrange multiplier, 193
Lagrange II, 214
– constraining forces, 226
– cyclical coordinates, 232
– equations of motion, 219, 244
– generalised coordinates, 215
– generalised force, 218
– generalised momentum, 232
– generalised potential, 230
– generalised velocity, 216
– ignorable coordinates, 216
– Lagrange function (Lagrangian), 229,

244
law
– of areas, 48
– Coulomb, 80

– of angular momentum conservation,
93

– of energy conservation, 111, 117
– of momentum conservation, 85
Legendre transformation, 238, 254
length of arc, 42, 188
lever, 99, 213
line integral, 109
line of nodes, 335
Lissajous
– figures, 29
– motion on ellipse, 46

mass
– centre of, 84
– gravitational, 70
– inertial, 69
– point, 15
mass distribution
– isotropic, 128
matrix
– inertia, 320
– rotation, 325, 327, 336
moment
– centrifugal, 320
– of a force, 93
– of a vector, 91
– of inertia, 320
momentum, 77
– angular, 91
– centre of mass, 85
– conservation, 85
– generalised, 232
– principle, 85
– principle, general, 91
– vector, 77
motion
– chaotic, 262, 266
– precessional, 235
– three-dimensional, 40

nabla operator
– ∇, 116–118, 123
Newton’s axioms, 72, 122
nonlinear system, 266
normal
– coordinates, 273
– frequency, 274
– modes, 273
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– oscillation, antisymmetric, 274
– oscillation, symmetric, 274
– vector, 43
nutation, 351

orthonormality relation, 283
oscillating
– electric circuit, 179
– string, 290
– system, coupled, 272
oscillator
– anharmonic, 161, 164, 266
– damped, harmonic, 169
– forced, harmonic, 172, 174
– harmonic, 16, 21, 23, 110, 160, 260
oscillator chain
– linear, N masses and (N +1) springs,

287
– linear, 278
– linear, 2 masses and 3 springs, 285
– linear, zero mode, 290

parametric representation
– hodograph, 45
– Kepler ellipse, 153
– space curve, 36
– trajectory, 29, 40
pendulum
– ballistic, 87
– constraining forces, 162, 167
– cycloid, 168
– Foucault, 311
– mathematical, 161, 191
– mathematical, damped, forced, 266
– mathematical, period, 165
– mathematical, phase space, 262
– physical, 168, 340
– spherical, 168, 233
– spherical, period, 235
period, 16
– Chandler, 345
phase, 29, 173
– resonance, 178
– velocity, 293
phase space, 256
– portrait, 262
– portrait, damped oscillator, 265
– trajectory, 257
pirouette

– mechanism of, 102
planetary system, 126, 140
Poincaré cut, 267
Poinsot’s construction, 344
point attractor, 266
point particle, 15
Poisson brackets, 257
– Jacobi identity, 257
portrait
– phase space, 262
potential, 118
– effective, 149, 235, 348, 350
– energy, 111, 124, 126, 127, 149, 188,

235, 348, 350
– generalised, 230
– gravitational, 120
precession, 235
– regular, 342, 348
principal
– axes of inertia, 325
– axes theorem, 325
– moment of inertia, 325
principle
– d’Alembert’s, 204, 209
– Hamilton’s, 246, 253, 254
– least action, 254
– of superposition, 180
problem
– brachystochrone, 250
– collision, 131
– eigenvalue, 279, 327
– initial value, 25
– Kepler, 139
– many body, 89
– two body, 84, 151
projectile motion, 28
– on rotating earth, 310
– with friction, 38

radial
– acceleration, 56
– velocity, 55
radius
– of curvature, 43
– vector, 77
resonance, 176
– half width, 177
– phase, 178
– quality factor, 177
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rigid body, 100, 314
– angular momentum, 332
– characterisation, 315
– degree of freedom, 315
rotation
– matrix, 325, 327, 336
rotation of vector field
– ∇×, 116–118, 123

secular equation, 281, 288, 327
separatrix, 262
series
– exponential, 17
– Fourier, 181
singularity
– elliptic, 264
– hyperbolic, 264
Steiner’s parallel axes theorem, 331
Stokes’
– friction, 18, 24, 266
string, oscillating, 290
superposition
– principle of, 180
system
– closed, 85
– nonlinear, 266
– open, 86
– planetary, 126
system of mass points
– angular momentum conservation, 99
– energy conservation, 126
– momentum conservation, 91
system of reference, see also coordinate

system

tangent vector, 43
tensor
– inertia, 320
– rank, 330
theorem
– Chasles’, 316
– Euler’s, 237
– Fourier, 180
– principal axes, 325
– Steiner’s, 331
top
– force-free, symmetric, 341, 346
– heavy, symmetric, 349
– nutation, 351

– oblate, 341
– prolate, 341
– spherical, 333, 341
torque, 93, 349
trajectory
– Cartesian leaf, 48
– equation of, 29
– parametric representation
– – three-dimensional, 40
– – two-dimensional, 29
– phase space, 257
transformation
– canonical, 259
– Galilei, 73
– Legendre, 238, 254
trihedron, 61, 63

variational
– calculus, 249
– Euler-Lagrange equation, 248
vector
– acceleration, 42
– binormal, 43
– field, 102
– momentum, 77
– normal, 43
– radius, 77
– tangent, 43
– velocity, 41
velocity
– addition theorem, 74
– areal, 49
– average, 19
– azimuthal, 55
– centre of mass, 85
– generalised, 216
– instantaneous, 20
– phase, 293
– radial, 55
– vector, 41
virtual
– displacement, 204
– work, 205, 213

wave equation, 293
work, 104
– virtual, 205, 213
work-energy relation, 109
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