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Units systems

m In this report, the units system is chosen to be Gaussian
Units, which is common used in the field of electrodynamics.

m Please see an example first.

m In qualitative study, Gaussian Units will not produce big
differences from SI Units.

m However, in quantitative study, a difference of a constant
between them does really make sense.
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Units systems

For example, the unit of charge in SI system is Coulomb. Then,
Coulomb’s law is presented as

o 1 Q1Q2

 dweg 12

(1.1)

where g¢ is the vacuum permittivity. As a comparison, in terms
of Gaussian system, the unit of charge is statC, which has a
dimension of ¢'/2¢m?/2s~'. The Coulomb’s law can be expressed
more simply like

po Q@2

r2

(1.2)
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Charge density

At a point r,

1 1

=—lim —— . 1.
o) = ¢ i s /V ey (1)

An approximate mean charge density over V,

)= S g2, (1.4)

(z,y,2)€V
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Current density

At one point,

1 . 1

)= 7 s

[ dw vy dodydz. (1)
V(r)
An approximate mean current density over V,

Jv(I‘) = Z Q(I7yv Z)V(‘Tvyv Z)v (16)

(z,y,2)eV

which is more usually used than the above one.
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A simple example

m Suppose the charges are flowing right-
ward with a same velocity v, v = |v|,
the charge density is p and the current
density is J everywhere.

<y

As
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A simple example

m Suppose the charges are flowing right-
ward with a same velocity v, v = |v|,
the charge density is p and the current
density is J everywhere.

m If it takes At to pass a As long distance.
Our aim is to show I = JA, where [ =

v Q/At.
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A simple example

m Suppose the charges are flowing right-
ward with a same velocity v, v = |v|,
the charge density is p and the current
density is J everywhere.

m If it takes At to pass a As long distance.
Our aim is to show I = JA, where I =

v Q/At.
m Clearly, V = AAs, Q = pV = pAAs and
— At = As/v.
As Qv AAI
_Wv Py _
==Y T AAs
_Q_Adp
=1 = © = Ay = pvA = JA.
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Magnetic induction

m Suppose a charge ¢ is moving towards a same direction with
the same velocity v. The moving charges can generate a
changing electronic field E.
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Magnetic induction
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m In the range of relativity, from many scientists’ work, they
found that there must be a new vector field generating a new
force to other charges, if there are, other than q.
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Magnetic induction

m Suppose a charge ¢ is moving towards a same direction with
the same velocity v. The moving charges can generate a
changing electronic field E.

m In the range of relativity, from many scientists’ work, they
found that there must be a new vector field generating a new
force to other charges, if there are, other than q.

m Now we call the new vector field as magnetic field, sometimes
magnetic induction instead, for historical reasons.

m Magnetic induction, in Gaussian units,
1

B(r) := —v x E(r),
c

at r, which, together with E, B, v, is observed in the same
frame of reference.
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Magnetic moment

At one point r, the magnetic moment is defined as

1

p(r) == 2o % J(r). (1.7)

For a charge distribution within a volume V, it is defined as

1
m:= / r x J(r)dzdydz, (1.8)
2c Vv

wherein the integral, r = (x,y, 2).
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m Imagine a particle with a charge +q ro-
tating around an axis with a constant an-
gular speed w. Suppose the rotating ra-

dius is R and the velocity at the position
ris v, v = |v| = wR keep constant. T

) N

—_—

11/27
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tating around an axis with a constant an-
gular speed w. Suppose the rotating ra-

dius is R and the velocity at the position
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m Consider a segment of the trajectory. I

(Please look at the whiteboard.) /
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m Imagine a particle with a charge +q ro-
tating around an axis with a constant an-
gular speed w. Suppose the rotating ra-

dius is R and the velocity at the position

ris v, v = |v| = wR keep constant. -
m Consider a segment of the trajectory. I

(Please look at the whiteboard.) /

m As a conclusion,

1
mziquv:IA. (1.9)
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Magnetic field strength

m Magnetization is defined as magnetic moment per volume,

m

M=—
Va

where m is the magnetic moment of the system.
m The magnetic field strength is then defined to be

H: =B - 47M.
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Other magnetic relevant quantities

m Magnetic susceptibility

M
H]

m Magnetic permeability
pi=14+4myx

m These are two dimensionless quantity. They both are rele-
vant to the materials’ properties.

m Relations with B and H.

B=4rM+H=4ryH+ H = pH.
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Magnetic work
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Magnetic force

m Suppose a charge g with a velocity v located near some mov-
ing source charges.

15 /27



Magnetic force

m Suppose a charge g with a velocity v located near some mov-
ing source charges.

m That vector field B is called magnetic induction while that
force is called magnetic force, or sometimes named after
Lorentz, which by deduction should be

F,, =qv xB.
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Magnetic force

zZy

m For a segment of current loop ds loading
an electronic current of I in a magnetic
field B, suppose a magnetic force F on
it.
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Magnetic force

m For a segment of current loop ds loading
an electronic current of I in a magnetic
field B, suppose a magnetic force F on
it.

&0

m Indeed, the current loop can be treated
as a number of charged particles flowing
with a velocity v. Then,

dF = pAdsv x B. (2.1)
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Magnetic force

m For a segment of current loop ds loading
an electronic current of I in a magnetic
field B, suppose a magnetic force F on
it.

&0

m Indeed, the current loop can be treated
as a number of charged particles flowing
with a velocity v. Then,

dF = pAdsv x B. (2.1)

m Since pv =J and JA =1, it is clear that

dF =1 x Bds. (2.2)
Integrate both sides on the whole loop L, then we have
F = / I x Bds. (2.3)
L
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Magnetic work

m Consider a cylindrical sample having a mean magnetic mo-
mentum M is located parallel with an external magnetic
field H which points in the z direction and has a difference
only in the x direction.
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Magnetic work

m Consider a cylindrical sample having a mean magnetic mo-
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the work done by the magnetic field on the sample should
be
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Magnetic work

m Consider a cylindrical sample having a mean magnetic mo-
mentum M is located parallel with an external magnetic
field H which points in the z direction and has a difference
only in the x direction.

m Move the sample towards x direction by a length of dz. Then
the work done by the magnetic field on the sample should
be

dy/ (™) = (—MaH

T

>d:v = —MdH.

m So M is a “generalized force” conjugate to the magnetic
field. The work done by the sample is MdH. By applying
the second law of thermodynamics to quasi-static process,
we have

dQ =TdS = dE + dW = dE + pdV + MdH.
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Outline

Low temperatures cooling
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Mechanical cooling: as an analogue

Mechanical cooling
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Magnetic cooling

Magnetic cooling
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Magnetic cooling

In fact, the changes in those two processes can be shown in the
following figure.
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Analysis
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m Suppose in the adiabatic process b — ¢, the initial temper-
ature is 7T; and the initial and final magnetic field strengths
are, respectively, H; and Hy.
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m Suppose in the adiabatic process b — ¢, the initial temper-
ature is 7T; and the initial and final magnetic field strengths
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m Since the entropy is kept constant, it turns to be true that

S(Ty, Hy) = S(T;, Hy). (3.1)
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m Suppose in the adiabatic process b — ¢, the initial temper-
ature is 7T; and the initial and final magnetic field strengths
are, respectively, H; and Hy.

m Since the entropy is kept constant, it turns to be true that
S(Ty, Hy) = S(Ti, H;). (3.1)
m This calls us in turn to study the temperature’s change when

S is constant, i.e. (0T/0H)g, from which we can get Tt by
simply integrating over H as long as we know S.
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We begin with

oS oS
0=dS=|55) dT — | dH.
(or), 7 (3,
So that it is sufficient to know about (2% )7 and (g—;) i, since

0
T dT (42)
(aH)Sdez— gu-r (3.2)
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For the numerator

By what mentioned above, dE = TdS — mdH, we rewrite this
formula in respect with free energy. Then, dF' = —SdT — mdH.
Thus,

oS B 0’F - 0’F _(9m (3.3)

OH ),  \O0HOT)  \oTOH) \oT ), '
By definition of magnetic moment m, m = MV = xHV, where
M is the magnetization, V the volume and x the magnetic suscep-

tibility. Since V is a constant here, H and T is two independent
variables, so that

(), = (), = (), o

24 /27



For the denominator

Define

om¢¢n21<g§>H. (3.5)

By (3.3), we have

1 /0Cu\ _ %8 B 0?8 B 0’m oy 0?x
T\ OH ), OHOT OTOH \ OT? T2
Integrate over 0 to H, we have

a8 Cu(T,H) _ 1/62TH’,,
e T H'dH'.
(8T>H T v o0T?
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Summary for this subsection

A knowledge of C';7(T,0) in zero magnetic field and a knowledge
of x(T', H) is sufficient to find (0T/0H)s.
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