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Pre-words

* Simply classical and sometimes crude

* Serves as very basis of studying non-equilibrium
states

* More complex derivation will be done Iin coming
chapters



HOW would you describe
diffusion”

» Collision time T

* Probability that a molecule survives a time t without suffering a collision P(t)
. Collision rate W

» probability per unit time that a molecule suffers a collision

* ndependent of the past history

» depend on particle speed V)

* Probability that a molecule suffers a collision between time t and t+dt

wdt



Derive the collision time

[P that a molecule survives a time t+dt without suftering a collision]
= [P that this molecule survives a time t without suffering a collision]

* [P that it does not suffer a collision in the time interval dt]
P(t +dt) = P(t)(1 — wdt)

Py + 2L gt = Pt — P(tywit

dt
1dP
P dt
InP = —wt + constant
P =(Ce Wt

The constant of integration C can be determined by the condition that P(0)="1

P(t) = e "



Derive the collision time
and
Relating collision time to particle mean speed

[P that a molecule, after surviving without collisions for a time t, suffers a collision in the time
interval dt]

P(t)dt = e~ lwdt *Normalised to 1

Define collision time to be the mean time between collisions

t = /O V(t)dt t

:/ e Wy dt t
0

[ e 1
:—/ e Yy dy = —
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Define mean free path to be the mean distance traveled by such a molecule between
collisions

[(v) = v7(v)



Important to note

* [hat a gas of molecules can then be characterized
by the average collision time, or the average mean
free path, of the molecules traveling with a mean

speed

* That we have linked our chosen description of
diffusion to microscopic properties



Relating scattering cross
section to particle radius

e Jotal scattering cross section

o) — 7'('(&1 —I—CLQ)2 — 7Td2



Relating scattering cross
section to collision time

1 =Vogn

~ v 1
[ =70 = =
VTLO'()

| ~3x 10 °cm > d



Before deriving viscosity

* Imagine we look at the diffusion inside a fluid in
terms of plates

 What it a shear force is acting on one side of the
container

* Jangential stress propagate down the container
according to a gradient
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Derive viscosity

We first define the constant of proportionality is called the
‘coefficient of viscosity”

OU
{ 0z

[the mean x component of momentum transported per unit

time per unit area across the plane in the upward direction]

(L) [y (2 — )]

§
[the mean x component of momentum transported per unit

time per unit area across the plane in the downward direction]

(%n@)[muw(z L)
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Derive viscosity

Ou,
Uz (2 +1) = uz(2) A 3, [...
Uy (2 — 1) = ugy(2) aa/l;xl...
1 - Uy . OU
P., = En(v)m( 2 3, ) = —n 3,
:1 2 l
n= gnom

The precise factor 1/3 is not to be trusted too much in this simplified calculation, but the
dependence on the other parameters ought to be correct



Analogous to two men on
two trains

* [wo railroad trains move side by side along parallel
tracks

* the speed of one train being greater than that of the
other

* Workers on each train constantly pick up sandbags
from their train and throw them onto the other train

e There is a transfer of momentum between the trains so
that the slower train tends to be accelerated and the
faster train to be decelerated



Interesting predictions
- viscosity is iIndependent of particle
density

n — 1 m_ ) \/SkT
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One paradox, two
assumptions

* |t the number of gas molecules is doubled, there
are twice as many molecules available to transport
momentum from on plate to the other;

* put the mean free path of each molecule is then
also halved, so that it can transport this momentum

only half as effectively



One paradox, two
assumptions

e \WWe assumed that

* the gas is sufficiently dilute that there is negligible
probability that more than two molecules come
simultaneously so close together as to interact
appreciably among themselves 1> d

e the gas is dense enough that the molecules collide

predominantly with other molecules rather than with the
walls of the container | < L

 Calm down. The range of densities where both
assumptions are simultaneously satistied is quite large

L>d



Derive thermal conductivity

We tirst define the constant of proportionality is called the
“coefficient of thermal conductivity”

o1
Q. = Ko

[the mean energy transported per unit time per unit area

across the plane in the upward direction]

1
Enﬂé(z — 1)

[the mean energy transported per unit time per unit area
across the plane in the downward direction]

1
gm_JE(z + )




Derive thermal conductivity
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Other dependency of thermal conductivity




Comparison of viscosity and
thermal conductivity

2 ¢ |kKT
K = \/ —
BﬁO'O T

Experimentally found that it lies somewhere in the range
between 1.3 and 2.5 instead of being unity



Application to nonclassical
gases - metal

 Conduction electrons as nonclassical gases

e Scattering either by lattice vibration (phonon) or
impurities
1 oe 1



Derive Self-diffusion

We tirst define the constant of proportionality is called the
“coefficient of self-diffusion”
anl
J,=—D——
0z
[the mean number of labeled molecules transported per unit

time per unit area across the plane in the upward direction]

1
éﬂnl(z + 1)

[the mean number of labeled molecules transported per unit
time per unit area across the plane in the downward direction]

1




Derive Self-diffusion

1_ 8n1 8711
= 2t = _pTi
2= mguly, RE

1

D = -7l
3
3
p_ 2 1 \/(kT)
3/ Poyg m
D 1
7] p

Experimentally found that it lies in the range between 1.3 and
1.5 Instead of being unity



t's elementary Kinetic
theory!

* Highly simplitied discussion of non-equilibrium
transport processes in dilute gases.

 Crude because no attempt whatever was made to
take into account the distribution of molecular

velocities



| ooking forward to the
coming chapters



