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Units systems

In this report, the units system is chosen to be Gaussian
Units, which is common used in the field of electrodynamics.

Please see an example first.

In qualitative study, Gaussian Units will not produce big
differences from SI Units.

However, in quantitative study, a difference of a constant
between them does really make sense.
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Units systems

For example, the unit of charge in SI system is Coulomb. Then,
Coulomb’s law is presented as

F =
1

4πε0

Q1Q2

r2
, (1.1)

where ε0 is the vacuum permittivity. As a comparison, in terms
of Gaussian system, the unit of charge is statC, which has a
dimension of g1/2cm3/2s−1. The Coulomb’s law can be expressed
more simply like

F =
Q1Q2

r2
. (1.2)
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Charge density

At a point r,

ρ(r) =
1

c
lim
V→0

1

V (r)

∫
V (r)

q(x, y, z)dxdydz. (1.3)

An approximate mean charge density over V ,

ρV (r) :=
1

cV

∑
(x,y,z)∈V

q(x, y, z). (1.4)
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Current density

At one point,

J(r) :=
1

c
lim
V→0

1

V (r)

∫
V (r)

q(x, y, z)v(x, y, z)dxdydz. (1.5)

An approximate mean current density over V ,

JV (r) :=
1

cV

∑
(x,y,z)∈V

q(x, y, z)v(x, y, z), (1.6)

which is more usually used than the above one.
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A simple example

Suppose the charges are flowing right-
ward with a same velocity v, v = |v|,
the charge density is ρ and the current
density is J everywhere.

If it takes ∆t to pass a ∆s long distance.
Our aim is to show I = JA, where I =
Q/∆t.

Clearly, V = A∆s, Q = ρV = ρA∆s and
∆t = ∆s/v.

⇒ J =
Qv

V
=
A∆lρv

A∆s
= ρv.

⇒ I =
Q

t
=
A∆ρ

∆t
= ρvA = JA.
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Magnetic induction

Suppose a charge q is moving towards a same direction with
the same velocity v. The moving charges can generate a
changing electronic field E.

In the range of relativity, from many scientists’ work, they
found that there must be a new vector field generating a new
force to other charges, if there are, other than q.

Now we call the new vector field as magnetic field, sometimes
magnetic induction instead, for historical reasons.

Magnetic induction, in Gaussian units,

B(r) :=
1

c
v ×E(r),

at r, which, together with E,B,v, is observed in the same
frame of reference.
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Magnetic moment

At one point r, the magnetic moment is defined as

µ(r) :=
1

2c
r× J(r). (1.7)

For a charge distribution within a volume V , it is defined as

m :=
1

2c

∫
V

r× J(r)dxdydz, (1.8)

wherein the integral, r = (x, y, z).
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An example

Imagine a particle with a charge +q ro-
tating around an axis with a constant an-
gular speed ω. Suppose the rotating ra-
dius is R and the velocity at the position
r is v, v = |v| = ωR keep constant.

Consider a segment of the trajectory.
(Please look at the whiteboard.)

As a conclusion,

m =
1

2
qR× v = IA. (1.9)
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Magnetic field strength

Magnetization is defined as magnetic moment per volume,

M =
m

V
,

where m is the magnetic moment of the system.

The magnetic field strength is then defined to be

H := B− 4πM.
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Other magnetic relevant quantities

Magnetic susceptibility

χ :=
|M|
|H|

Magnetic permeability

µ := 1 + 4πχ

These are two dimensionless quantity. They both are rele-
vant to the materials’ properties.

Relations with B and H.

B = 4πM + H = 4πχH + H = µH.
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Magnetic force

Suppose a charge q with a velocity v located near some mov-
ing source charges.

That vector field B is called magnetic induction while that
force is called magnetic force, or sometimes named after
Lorentz, which by deduction should be

Fm = qv ×B.
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Magnetic force

For a segment of current loop ds loading
an electronic current of I in a magnetic
field B, suppose a magnetic force F on
it.

Indeed, the current loop can be treated
as a number of charged particles flowing
with a velocity v. Then,

dF = ρAdsv ×B. (2.1)

Since ρv = J and JA = I, it is clear that

dF = I×Bds. (2.2)

Integrate both sides on the whole loop L, then we have

F =

∫
L

I×Bds. (2.3)
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Magnetic work

Consider a cylindrical sample having a mean magnetic mo-
mentum M̄ is located parallel with an external magnetic
field H which points in the z direction and has a difference
only in the x direction.

Move the sample towards x direction by a length of dx. Then
the work done by the magnetic field on the sample should
be

dW (m) =

(
−M̄ ∂H

∂x

)
dx = −M̄dH.

So M̄ is a “generalized force” conjugate to the magnetic
field. The work done by the sample is M̄dH. By applying
the second law of thermodynamics to quasi-static process,
we have

dQ = TdS = dE + dW = dE + pdV + M̄dH.
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Mechanical cooling: as an analogue

Mechanical cooling
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Magnetic cooling

Magnetic cooling
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Magnetic cooling

In fact, the changes in those two processes can be shown in the
following figure.
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Analysis

Suppose in the adiabatic process b → c, the initial temper-
ature is Ti and the initial and final magnetic field strengths
are, respectively, Hi and Hf .

Since the entropy is kept constant, it turns to be true that

S(Tf , Hf ) = S(Ti, Hi). (3.1)

This calls us in turn to study the temperature’s change when
S is constant, i.e. (∂T/∂H)S , from which we can get Tf by
simply integrating over H as long as we know S.
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Analysis

We begin with

0 = dS =

(
∂S

∂T

)
H

dT +

(
∂S

∂H

)
T

dH.

So that it is sufficient to know about ( ∂S
∂H )T and ( ∂S∂T )H , since(

∂T

∂H

)
S

=
dT

dH
= −

(
∂S
∂H

)
T(

∂S
∂T

)
H

. (3.2)
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For the numerator

By what mentioned above, dE = TdS − mdH, we rewrite this
formula in respect with free energy. Then, dF = −SdT −mdH.
Thus,(

∂S

∂H

)
T

= −
(

∂2F

∂H∂T

)
= −

(
∂2F

∂T∂H

)
=

(
∂m

∂T

)
H

. (3.3)

By definition of magnetic moment m, m = MV = χHV , where
M is the magnetization, V the volume and χ the magnetic suscep-
tibility. Since V is a constant here, H and T is two independent
variables, so that(

∂S

∂H

)
T

=

(
∂m

∂T

)
H

= HV

(
∂χ

∂T

)
H

. (3.4)
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For the denominator

Define

CH(T,H) = T

(
∂S

∂T

)
H

. (3.5)

By (3.3), we have

1

T

(
∂CH

∂H

)
T

=
∂2S

∂H∂T
=

∂2S

∂T∂H
=

(
∂2m

∂T 2

)
H

= HV

(
∂2χ

∂T 2

)
H

.

Integrate over 0 to H, we have(
∂S

∂T

)
H

=
CH(T,H)

T
=
CH(T, 0)

T
+ V

∫ H

0

∂2χ(T,H ′)

∂T 2
H ′dH ′.
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Summary for this subsection

A knowledge of CH(T, 0) in zero magnetic field and a knowledge
of χ(T,H) is sufficient to find (∂T/∂H)S .

26 / 27



Acknowledgement

Thank you for your attention!

27 / 27


	Terminologies
	Magnetic work
	Low temperatures cooling
	Mechanical cooling
	Magnetic cooling


