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1.What will we talk about? 

Up to now we have dealt 

almost exclusively with 

systems consisting of a 

single "component" and a 

single "phase". 

However, in this chapter, we 

will focus our attention on a 

more general situation, 

namely, the system consisting 

of several components in 

several phases. 



2.Background knowledge 

2.1 Le Chatelier`s principle 
 

If a system is in stable 
equilibrium, then any 

spontaneous change of its 

parameters must bring 

about processes which tend 

to restore the system to 

equilibrium. 



Equilibrium 

The picture below illustrates the 

basic three kinds of equilibrium 

in mechanics, we can know from 

the picture that when the system 

is in stable equilibrium: 
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2.2 Gaussian distribution 
      (Normal distribution) 
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From some mathematical proof, we can get an important 

conclusion:(variance) 
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3.General Equilibrium Conditions 

3.1 Isolated system 

 

3.2 System in contact with a reservoir at constant  

      temperature 

 

3.3 System in contact with a reservoir at constant  

      temperature and pressure 

 

3.4 Stability conditions for a homogeneous substance 



3.1 Isolated system 
 

 

We know from the second law of 
thermodynamics that  in a natural 

thermodynamic process, there is an 

increase in the sum of the entropies 

of the participating systems. 
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Theorem 1  
 

For a thermally isolated system, the stable equilibrium 

situation is characterized by the fact that 
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3.2 System in contact with a reservoir at constant temperature 
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system A is in contact with 

the reservoir A` at constant 

temperature  
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where we have introduced the 

Helmholtz free energy: 
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Helmholtz free energy F 
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The maximum work which can be done by a systen in 

contact with a heat reservoir is given by           . (That`s 

why F is called "free energy".) 

 

If the exeternal parameters of system A are kept fixed, 

then W=0 and yields the condition 

0F W 

0( )F

(8.2.5) 
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Theorem 2  
If a system, whose external parameters are fixed, is in 

thermal contact with a heat reservoir, the stable 

equilibrium situation is characterized by the condition 

that 
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3.3 System in contact with a reservoir at constant temperature  
      and pressure 
 

 
 

A            A` 

system A is in contact 

with the reservoir A` at 

constant temperature      

and pressure 
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Gibbs free energy G 
 
 

 

(8.3.4) 

If all the exeternal parameters of system A, except its 

volume, are kept fixed, then       =0 and yields the 

condition 
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Theorem 3 
If a system is in contact with a reservoir at constant 

temperature and pressure and if its external parameters 

are fixed so that it can only do the work          , then the 

stable equilibrium situation is characterized by the 

condition that 
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3.4 Stability conditions for a homogeneous substance 
 

 
 

A 

Let`s first consider a one-

component system in a single 

phase. Focus attention on 

some small, but macroscopic, 

part A of this system where A 

consists of some fixed number 

of particles. The rest of the 

system is then relatively very 

large and acts like a reservoir 
at some constant temperature 
     and constant pressure     . 0T 0p



1) Let V and T be the two independent parameters 

specifying the macrostate of A. 

 

                 then 

 

2) By Theorem 3, we know that the condition for 

equilibrium is  

 

                                        minimum 

 

which means 
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3) First, keep V a constant.  
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Hence we arrive at the 

obvious conclusion that 

a necessary condition for 

equilibrium is that the 

temperature of the 

subsystem A is the same 

as that of the 

surrounding medium. 

4) Next, let`s keep V a constant.  

   

  similarly, we can get the condition 
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5) Isothermal compressibility  
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This is a physically quite 

reasonable result consistent 

with Le Chatelier`s principle. 

We define the isothermal compressibility 
 

 

 

In physics, compressibility is a measure of the relative 

volume change of a fluid or solid as a response to a 

pressure (or mean stress) change. 
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6) Density fluctuations 

Let φ(V)dV denote the probability that the volume of 

A lies between V and V+dV. 
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The probability is simply a Gaussian distribution, so 

we can get 
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The density of A is n=N / V, then  
2
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An interesting case arises when                 , then             and 

the density fluctuations become very large. 

 

We define the temperature and pressure as the "critical 
point" of  a substance where                 . 

 

The very large density fluctuations at this point lead to a 

very large scattering of light. As a result the substance, 

which is ordinarily transparent, will assume a milky white 

appearence at its critical point. This impressive 

phenomenon is known as "critical point opalescence". 
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Change the temperature and the substance will get 

the critical point opalescence at the critical point (p,T), 

where                . ( / ) 0p V  



4.Equilibrium between Phases 

4.1 Equilibrium conditions and the Clausius-Clapeyron 
      equation 
 

 

4.2 Phase transformations and the equations of state 



4.1 Equilibrium conditions and the Clausius-Clapeyron equation 
 
 
 

 

Temperature T 

   Pressure p 

Heat reservoir 

piston 

2 

1 

System A consists of two phases of a 

single component 1 and 2. It is in 

equilibrium with a reservoir at the 

constant temperature T and constant 

pressure p. 

 

Then by theorem 3, the equilibrium 

condition is that the Gibbs free 

energy G of the system is a 

minimum. 

 

                                    minimum 
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Let 

             =the number of moles of phase i present in the system 

             =the Gibbs free energy per mole of phase i at this 

               temperature T and pressure p 

 

Then G can be written 

 

 

The conservation of matter implies that     

                                                    constant       

 

Equilibrium requires that G be stationary for changes in     : 

thus 

  

Hence we obtain as a necessary condition for equilibrium that 

 

                                                    (8.5.4) 
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Phase-equilibrium line 

p 

T 

A B 

1 2g g

1 2g g

Phase 1 

Phase 2 
1 2g g

Along the phase-equilibrium 

line,             and the two 

phases can coexist in 

equilibrium. This line divides 

the pT plane into two regions: 

one where           , so the 

phase 1 is the stable one and 

the other where            , so the 

phase 2 is the stable one. 
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 Clausius-Clapeyron equation 
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Consider point A, we have: 

 

 

 

Consider now a neighboring 

point, such as B: 
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By using the fundamental thermodynamic relation 
 

 

Hence  

 

 

Then we can get the Clausius-Clapeyron equation  
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This equation relates the slope of the phase-equilibrium 
line at this point to the entropy change      and volume 

change      of the substance in “crossing the line” at this 

point, i.e., in undergoing a change of phase at this 

temperature and pressure. 
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We define the “latent heat of transformation”       as the heat 

absorbed when a given amount of phase1 is transformed to 

phase 2.  

Then we have  

 

Let 1 refer to liquid (or solid) phase and 2 to the vapor. 

Then 

 

Let us assume that the vapor can be adequately treated as an 

ideal gas, so its equation of state  is simply 

 

 

Then 

 

This shows that the vapor pressure p is a very rapidly 

increasing function of T, the temperature dependence being 

determined by the magnitude of the latent heat of vaporization.  

 vapor pressure 

12L

dp l

dT T v




2 1 2v v v v   

2pv RT

/v RT p  2

1 dp l

p dT RT


/

0

l RTp p e



4.2 Phase transformation and the equation of state 
 
 
 

 

Consider a single-component 

system. For a constant 

temperature T, the diagram 

of van der Waals equation is 

shown on the left. 
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(1) if the pressure is sufficiently low that         , the curve 

yields, correspondingly, a unique value of v. There exists 

a well-defined single phase. Here the slope of the curve  

                 as is necessary by the stability condition. Also, 

            is relatively small, so that the compressibility of 

this phase is relatively large, as would be the case for a 

gas phase.  
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5) Isothermal compressibility  
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This is a physically quite 

reasonable result consistent 

with Le Chatelier`s principle. 

We define the isothermal compressibility 
 

 

 

In physics, compressibility is a measure of the relative 

volume change of a fluid or solid as a response to a 

pressure (or mean stress) change. 
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(2)if the pressure is sufficiently high 

that         . There exists again a single 

phase with a unique value of v. The 

stability condition                  is again 

satisfied, but             is relatively large 

Hence the compressibility of this 

phase is relatively small, as would be 

the case for a liquid phase.  
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(3)Now consider the 

intermediate pressure 

range              . 

There are now, for each 

pressure p, three possible 

values of volume v. It`s 

obvious that     violates 

the stability condition 
                . Hence we have 

to decide whether     or     

is more stable, which 

needs us to compare the 

molar-free energies      

and    . 
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If we perform the integral 

from point O along the 

curve to Point M, we will 

get the shaded area on 

the left. 

T is a constant here. 
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At point X the free energies g 

of both phases become equal. 

This      then is the pressure 

where both these phases can 

coexist and where the phase 
transformation occurs. 
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As one goes to higher 

temperature the two extremum 

points where                      move 

closer, which implies that the 

volume change       in the phase 

transformation decreases. 

 

As the temperature is increased 

further, the two extremum 

points coincide and the phase 
transformation has barely 

disappeared. (Critical point C) 
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( / ) 0Tp v  Since                     at the critical 

point C, it follows from our 

previous discussion that the 

density fluctuations become 

very large, i.e., the substance 

“cannot quite make up its mind” 

whether to be a liquid or a gas. 

 

At still higher temperature          

                  everywhere so there 

is no phase transformation. 

There is only a single fluid 
phase from high compressibility 
to low compressibility as the 

pressure increases. 
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5. Systems with several components; chemical equilibrium  

5.1 General relations for a system with several components 

 

5.2 General conditions for chemical equilibrium 
 

5.3 Chemical equilibrium between ideal gases 



5.1 General relations for a system with several components 
 
 
 

 

Consider a homogeneous system, of energy E and of volume V, 

which consists of m different kinds of molecules. 
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Let us introduce the “chemical potential per molecule” 
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Hence we can conclude that the chemical potential per 
molecule is just equal to the Gibbs free energy per molecule. 
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5.2 General conditions for chemical equilibrium 
 
 
 

 
 

A system consists of            and          molecules in the gas 

phase. 

 

We change the reaction                                                                   

into the standard form 

 

We use                     to represent the chemical symbols and let     

     denote the coefficient of     . 

 

Then a general chemical equation can be written in the form 

 

 

 

Under the assumed conditions of constant V and E 
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The changes in the numbers Ni should be 

 

 

where     is a constant of proportionality. 

 

 

Hence 

                                                                    (8.9.7) 

 

This is the general condition for chemical equilibrium. 
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5.3 Chemical equilibrium between ideal gases 
   5.3.1 The relationship between the mean numbers of the  
             reacting molecules 
             In equilibrium 

 
 
 
 
 
             The partition function is 

 

 

                 

 

 

              Where the possible states of the kth molecule is  

              labeled by      and the energy of the molecule in this  

              state is denoted by             . 
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In this product there will be Ni equal factors for all molecules 

of type i, each of these factors being equal to 

 

 

Thus 

 

 

But this is inconsistent with the essential indistinguishability 
of the molecules in quantum mechanics to count these gas 

states as distinct. Therefore the equation must be divided by 

the                       possible permutations of like molecules 

among themselves. Thus we get 

 

 

 

                                                                                 (8.10.7) 
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This can also be written 

 

  

Where 

 

is the partition function of a gas of Ni molecules occupying the 

given volume V by itself in the absence of all other gases. 

 

From this, we can get a variety of important results. 

 

 

 

 

 

 

 

          

Where       is the “partial pressure of the ith gas”. 
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   Where we have used Stirling`s formula  lnN! = NlnN — N . 



 

 

The chemical potential of the jth kind of molecules is simply 

given by 

 

 

 

Then 

 

 

 

where 

 

 

 

is a quantity (the so-called “standard free-energy change of the 
reaction”) which depends on T and V, but not on the numbers 

Ni of molecules. 

 

 

, ,( ) (ln ln )j T V N j j

j

F
kT N

N
 


   



0F (ln ln ) F ln 0i i i i i

i i

kT b N kT b N        

, ,( F ( ) )T V N i i i

i ii

F
b b

N



  


 

0F lni i

i

kT b    

( ln (ln ln 1))i i i

i

F kT Z kT N N     

( exp[ (s)])i i

s

  



0F
ln ib

i

i

N
kT


  1 2

1 2 ... (T,V)mbb b

m NN N N K

1 2

0 1 2(T,V) exp[ F / ] ... mbb b

N mK kT     

0F (ln ln ) F ln 0i i i i i

i i

kT b N kT b N        

Where  

 

is independent of the numbers of molecules present and is 

called the “equilibrium constant”. 
 

                                                        is the explicit relation 

between the mean numbers of molecules present in 

equilibrium. And this equation is called the “law of mass 
action”. 

(8.10.21) 
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5.3.2 Temperature dependence of the equilibrium constant 
 

 

 

 

 

 

 

 

 

 

 

But 

 

 

 

△S denotes the entropy change of the reaction when      of 

each of the reactant molecules are transformed into     of each 

of the product molecules. 
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If △E > 0, this equation asserts that Kn increases as T is 

increased. This result is again in accord with what would be 

expected from Le Chatelier`s principle.  
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When △E>0, heat is 

absorbed as a result of the 

reaction.  

 

If the temperature T 

increases, more molecules 

must then be produced in 

order to absorb heat and 

thus to restore the original 

temperature. Thus Kn must 

increase. 




