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Isolated system

Consider an isolated system A. Hamiltonian:

H = H0 + Hi, (1.1)

where

H −− Hamiltonian of the system;

Hi −− describing inner interactions of A;

H0 −− non-interaction part of H .
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Isolated system

Let A be in the quantum state of r and Er the corresponding
total energy.

1 If Hi = 0, then A remains at state r.

2 If Hi > 0, then A is able to transition to another state s. Let
Wrs be the transition probability per unit time from state r
to state s of system A.

For any state r, s, Wrs = Wsr (by quantum mechanics);

If Es 6= Er, then Wrs = 0.
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Isolated system

Let Pr(t) denote the probability that system A is found in state
r at time t. Then

dPr
dt

=
∑
s

PsWsr −
∑
s

PrWrs (1.2)

=
∑
s

(Ps − Pr)Wrs.

(1.2) is called “master equation”.

If A is in equilibrium, Ps = Pr, then the probability Pr does
not change with time.

This equation describes the reversible behavior of a system.
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System in contact with a heat reservoir

Consider A(0) = A+A′, combining system A and a reservoir A′.
Hamiltonian

H (0) = H + H ′ + Hi, (1.3)

where

H (0),H ,H ′ −− respectively, Hamiltonians of A(0),A,A′,

Hi −− describing the interaction between A and A′.

Remark

If Hi = 0, then the total system consists of two isolated systems,
discussed just now.
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System in contact with a heat reservoir

Definition

Let r be the quantum state of A, Er the energy level and Pr the
probability of finding A in state r. Similar definitions r′, E′r′ , P

′
r′

are defined for A′. Besides, Wrs and Wsr are defined as before.
Similarly define W (0)(rr′ → ss′) for the combining system.

1 If Er + E′r′ 6= Es + E′s′ , then W (0)(rr′ → ss′) = 0.

2 W (0)(rr′ → ss′) = W (0)(ss′ → rr′).

3 Note that A′ is always in equilibrium so that

P ′r′ =
e−βE

′
r′∑

r′ e
−βE′

r′
=: Ce−βE

′
r′ . (1.4)
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System in contact with a heat reservoir

4 If Er + E′r′ = Es + E′s′ , then the ratio of Wrs and Wsr is

Wsr

Wrs
=
e−βEr

e−βEs
. (1.5)

5 From (1.5), if Es > Er, then Wsr > Wrs;

6 Master equation

dPr
dt

=
∑
s

(PsWsr − PrWrs)

=
∑
s

(Pse
βEs − PreβEr)e−βErWrs.
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Brownian motion

Definition (Brownian motion)

A small macroscopic particle immersed in a liquid exhibits a ran-
dom type of motion. This phenomenon is called “Brownian mo-
tion”.

Pay attention to the coordinate x, then

m
dv

dt
= F (t) + F (t). (2.1)

11 / 21



Transition probabilities and master equation
Brownian motion
To be continued...

Langevin equation

Equation (Langevin)

m
dv

dt
= F (t)− αv(t) + F̃ (t) (2.2)

m −− mass of particle

v −− velocity of particle

F −− external force (gravity, electrcic force, etc.)

F̃ −− a noise force by stochastic processes

α −− a positive constant, called “friction constant”
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Markov process

Consider the Brownian motion again.

Let P (v, t) be the probability that the particle’s velocity at
time t lies between v and v + dv.

Assume this probability depends on the original velocity v0.
The probability should be re-expressed like P (v, t|v0). This
kind of motion is called “Markov process”.
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Master equation

Equation (Master equation under Markov process)

∂P

∂t
τ = −P (v, t|v0) +

∫
R
P (v1, t|v0)P (v, τ |v1)dv1. (2.3)

Just note

P (v, t+ τ |v0) = P (v, t|v0)−
∫
v1

P (v, t|v0)P (v1, τ |v)dv1

+

∫
v1

P (v1, t|v0)P (v, τ |v1)dv1

and ∫
v1

P (v1, τ |v)dv1 = 1. (2.4)
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Fokker-Planck equation

Fokker-Planck ⇒

∂P

∂t
τ = −P (v, t|v0)

+

∞∑
n=0

(−1)n

n!

∂n

∂vn

[
P (v, t|v0)

∫
R
ξnP (v + ξ, τ |v)dξ

]
.

Equation (Fokker-Planck equation)

∂P

∂t
= − ∂

∂v
(M1P ) +

1

2

∂2

∂v2
(M2P ). (2.5)
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Fokker-Planck equation

Equation (Solution for F-P equation)

P (v, t|v0) =

[
m

2πkBT (1− e−2γt)

]1/2
exp

[
−m(v − v0e−γt)2

2kBT (1− e−2γt)

]
.

1 For t→∞, P (v, t|v0)→ a Maxwell distribution.
Particles should come to equilibrium at temperature T ,
irrespective of their past history.

2 At any time t, P (v, t|v0) obeys Gaussian distribution with a
mean value v0e

−γt.
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Thank you for your attention!

To be continued...
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Correlation functions and the friction constant
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Fluctuation dissipation theroem

Consider an isolated system A described macroscopically by n
parameters {yi}ni=1.

Definition (Correlation function relating yi and yj)

Kij(s) := 〈dyi
dt

(t)
dyj
dt

(t+ s)〉. (3.1)

Theorem (Fluctuation dissipation theorem)

αij =
1

k

∫ 0

−∞
Kij(s)ds. (3.2)
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